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Report on the PhD thesis of Pratik Ghosal
Efficient algorithms for combinatorial optimization problems related to
rank-mazimal matchings and rectangle tiling

Overview of the thesis

The PhD thesis of Pratik Ghosal concerns two important problems in the areas of algorithmics
and combinatorial optimization. The first part of the dissertation contains the results related to
rank-maximal matchings in bipartite graphs, and the second part consists of results related to
the rectangle tiling problem.

Rank-maximal matchings in bipartite graphs. Problems related to matchings in graphs
occupy one ol the central places of algorithmic graph theory. Due to the number of various
applications (auctions, resource allocations) they are intensively studied in different directions
that aim to construct efficient off-line, on-line, and dynamic algorithms for various kinds of
matching problems. A fairly important branch of this field is also focused on the construction of
efficient algorithms searching not only for matchings of maximum size, but also for matchings
optimal with respect to other parameters measuring its quality, such as those related to preferences
between matched vertices.

The results contained in Chapters 3-4, related to rank-mazimal matchings in bipartite graphs,
fit very well in this line of research. An instance of the rank-maximal matching problem consists
of a weighted bipartite graph G = (AU P, ) with the edges £ between applicants from the set A
and posts from the set P. Every edge e = (a, p) from & has a weight in the set N~ {0}, called a
rank, which determines how attractive the post p is for the applicant a. It is assumed that the
lower the rank of the edge e = (a,p), the more attractive the post p is for the applicant a (in
particular, rank 1 edges adjacent to a lead to the first choice posts for a). A matching M in
G is called rank-mawximal if the largest possible number of applicants is matched in A to their
first choice posts, and subject to this condition, the largest number of applicants are matched
in M to their second choice posts, and so on. Currently the best algorithm for rank-maximal
matching, by Irving, Kavitha, Mehlhorn, Michail, and Paluch, works in time O(min(n.ecyn)m),
where ¢ is the maximal rank of an edge in a maximal-rank matching. Since this algorithm,
hereinafter referred to as the combinatorial algorithm. is the starting point for the considerations
of Chapters 3-4, its detailed description is given in Chapter 2.

The key concept used in the design of the combinatorial-algorithm for the rank-maximal
matching is the Gallai-Edmonds decomposition of a bipartite graph . Let M be a maximum
matching in G. The Gallai-Edmonds decomposition of G partitions the vertices of G into three
sets £, 0, U that contain the vertices reachable by an even/odd M-alternating path in G starting
in a free vertex of M (the sets E and O, respectively), and the vertices that are unreachable by
such a path (the set U). It turns out that the Gallai-Edmonds decomposition is independent.
on the choice of M and that it has the property that every edge in any maximum matching in
G joins either two vertices from U or a vertex from O and a vertex in E. The combinatorial
algorithm sequentially processes the graphs Gy.Go, . ... G, where GG; is the graph derived [rom G
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by restricting to the edges of rank < 7 and r is the maximal rank of an edee in G, and finds rank-
Al 2 £ ;

maximal matchings M, ..., M, in Gy,...,G,, respectively. Note that M, is a rank-maximal
matching in G. Briefly, to compute M. ..., M, the algorithm constructs the reduced graphs
!y...,G" from Gy, ...,G,, which have the properties that the sets of rank-maximal matchings

in G} and G; are the same and coincide with the set of maximum matchings of G arisen by
the application of an augmenting path in G} with respect to any rank-maximal matching of
Gi_y. Thus, the Gallai-Edmonds decomposition of G not only determines which vertices of G
will always belong to the rank-maximal matchings in G%, but it also allows to reject irrelevant
edges from G; (edges that do not belong to any rank-maximal matching in G;) to compute the
reduced graph G7.

Chapter 3 of the thesis is focused on the problem of maintaining a rank-maximal matching in
the preference graph G' that may change over time. A single modification of G may consists
of addition/deletion of a single vertex with edges adjacent to it, and of addition/deletion of
a single edge. The task of the algorithm is to update the rank-maximal matching after each
modification of G (the algorithms that work under such a scenario are called dynamic). The
main result of Chapter 3 is a dynamic algorithm that in time O(min(cn,n?) +m), where c is
the maximal rank of an edge in the current solution, updates the rank-maximal matching after
each modification of G. In Chapter 3.6 it is shown that all modifications can be handled in the
same time complexity as adding a new vertex with adjacent edges to G. The dynamic algorithm
of Chapter 3 maintains the same data structure as the combinatorial algorithm described in
Chapter 2, consisting of the reduced graphs Gf,...,G. of Gy,..., G, their Gallai-Edmonds

decompositions, and their rank-maximal matchings M,,..., M,. Thus, suppose that a new
applicant @ with adjacent edges has been added to G. Denote the extended graph by H. The
key ingredient that allows to construct the algorithm comes to a deep understanding of the
differences between the reduced graphs G, ..., G. for G and the reduced graphs Hj, ..., H' for H,

between their Gallai-Edmonds decompositions, and their rank-maximal matchings M. ..., M,
and Np,...,N.. The author proves, which is crucial and highly non-trivial here, that every
rank-maximal matching N; can be obtained by the application of an appropriately chosen M-
alternating or M;-augmenting path in H; starting in the newly added vertex a. So, the main
combinatorial result of Chapter 3 asserts that a rank-maximal matching in H can be obtained by
the application of some alternating/augmenting path with respect to a rank-maximal matching
in G. It is worth noting here that the presented dynamic algorithm is the first that exploits this
property; the other known dynamic algorithms update the data structure gradually by applying
a number of alternating/augmenting paths. Based on these ideas the dynamic algorithm can
update the reduced graphs G, ...,G. and their Gallai-Edmonds decomposition also in time
O(min(cn,n?) +m).

Chapter 4 of the thesis is focused on so-called manipulation strategies for an unfair applicant.
In the scenarios considered in the thesis it is assumed that every applicant knows the preferences
of all the remaining applicants, and that a rank-maximal matching is chosen at random by some
external authority from the set of all rank-maximal matchings. It turns out that this knowledge
can be used by an unfair applicant, called manipulator, who can falsify his list of preferences to
be assigned to a post of higher (true) rank than if he had given the true list of his preferences
(the highest posts for a are the posts adjacent to a by rank 1 edges). It is assumed that only the
manipulator can be untruthful, other applicants show their true preference lists to the authority.
It is quite easy to give an example which shows that falsifying the preference list can be beneficial
to the manipulator. Chapter 4 provides three manipulations strategies, called best non-first.
min-maz, and improve best, asserting different profits to the manipulator. To discuss the first
two strategies we need to introduce the notion of f-posts: a post p is an f-post if p is matched
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to a rank 1 edge in every rank-maximal matching in the preference graph restricted to all the
applicants with the manipulator removed. It is quite easy to show (Lemma 28 in Chapter 4.3)
than whenever we have a rank 1 edge between the manipulator and some non- f-post, then the
manipulator is adjacent to some rank 1 edge in every rank-maximal matching. In this case the
manipulator has no reason to falsify his preference list. Otherwise, the external authority may
match the manipulator to some non- f-post, not necessarily with the highest rank (Lemma 30
in Chapter 4.3). The simple and elegant best non-first strategy ensures that the authority will
always assign the manipulator to a non-f-post with the highest true rank. It turns out that
the strategy best non-first is not always optimal for the manipulator. Sometimes, the use of the
strategy min-maz may assert that the manipulator is matched to some f-post with higher true
rank than the highest rank of a non- f-post. In this strategy, for all f-posts p processed in order
from most attractive to least attractive, the manipulator checks whether it is possible to set his
preference list so that in every rank-maximal matching he is matched to p. Obviously not every
f-post p has this property. In Chapter 4.5 the author gives a very ingenious and non-trivial
polynomial algorithm, based on the concept of eritical ranks, which allows to test whether such
a list exists for a fixed f-post p. The last presented, simple and elegant strategy improve best
ensures that in some (but not every) rank-maximal matching the manipulator is assigned to
a post with the highest true rank.

Chapter 5 of the thesis is devoted to the rectangle tiling problem, in which for a given two-
dimensional array A (called rectangle) and a number p we are looking for a tiling of A by p
non-overlapping rectangles (called fzles) that minimizes the weight of every rectangle, where
the weight of a rectangle is the sum of entries of A covered by this rectangle. It is known that
the rectangle tiling problem is NP-complete. Let w(A) denote the weight of the rectangle A.
Note that in any tiling of A there is a tile that has the weight at least "%{1)] Hence, [E{Jﬁl—‘ is
a natural lower bound on the weight of a tile that is used to measure the quality of approximation
algorithms for the rectangle tiling problem. Thus, we say that an algorithm for the rectangle tiling
problem has approxzimation ratio « if it constructs in polynomial time a tiling in which every tile
has weight at most « - (L;).‘ The rectangle tiling problem has attracted the attention of many
researchers, in particular, the upper and the lower bounds on approximation ratio have been
improved many times. Eventually, in 2004, Paluch designed an algorithm with the approximation
% and proved it is best possible. Chapter 5 of the thesis is focused on the binary rectangle
tiling problem, in which every entry of A is from the set {0,1}. The main result (Theorem 61)
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provides an (% + ;%)—approximation algorithm for the binary rectangle tiling problem. In
particular, for instances where the weight of A is much larger than p, the approximation factor
approaches to % The algorithm itself is based on the choice of the better of two presented tiling
strategies. Both of these strategies construct special type tilings, one "from left to right” and the
second "from top to bottom", with respect to so-called boundaries and shadows. Then it is proved,
using the weak duality theorem for linear programming, that the better of these strategies yields
a tiling guarantecing the approximation factor (:j + %) Moreover, Theorem 62 proves that
the constant % is the matching lower bound for the approximation ratio in the binary rectangle
tiling problem. Indeed, the theorem provides, for every even number p and every sufficiently
large W, an example of a binary matrix A of weight at least > W such that any tiling of A
contains a tile with the weight at least % . ”E,% + 1.

Overall evaluation

The presented thesis contains a number of deep and original results from the area of algorithmics
and combinatorial optimizations. In my opinion, there are three excellent (and the most

e



important) results: the dynamic algorithm and the manipulation strategy mini-maz for the
rank-maximal matching and the %—approximation algorithm for the binary rectangle tiling
problem. It is worth noting that these results are significantly different, i.e., we find there the
results of a technical nature as well as those based on interesting and original ideas. All this
proves the author’s great skills to solve difficult algorithmic and combinatorial problems.

The dynamic algorithm maintaining the rank-maximal matching, presented in Chapter 3,
is technical and complicated, and its construction required a thorough understanding of the
effects made by a single change in the graph on the structures that make possible to maintain
the rank-maximal matching. The result itself is very deep and important in the context of the
studies involving matchings in graphs with preferences. A certain drawback of this part is the
fairly large number of editorial errors that make it difficult to read (the list of spotted errors
is attached to the review). For example, the set Alive(i), which plays the crucial role in the
design of the algorithm, is not defined anywhere in the thesis. It should be noted, however, that
this part of the dissertation is long and technically complicated, and the author himself put
much effort to make it easier for the reader. In particular, the technical lemmas (Lemmas 14-15)
used in the correctness proof (Theorem 17) of the dynamic algorithm, are very well abstracted.
Additionally, the author has included many thoroughly described examples illustrating the work
of the algorithm, which significantly facilitates its understanding.

Chapter 4 contains an elegant manipulation strategy min-maz. The strategy is based on
interesting and original ideas, which allow to place irrelevant posts (to which the manipulator
never will be matched) on high positions on the manipulator’s preference list. These ideas
allow to obtain a very clever algorithm for testing whether the manipulator can be assigned to
a certain f-post in every rank-maximal matching.

Chapter 5 contains a %—.-»1ppr0ximai'.i0n algorithm for the binary rectangle tiling problem.
Although the result is partly inspired by Paluch’s 2004 work, the algorithm itself contains new
ingredients. In particular, it is worth mentioning the tiling strategies based on the notions of
boundaries and shadows, as well as a very elegant and nontrivial use of the weak duality theorem
for linear programming for the correctness proof of the algorithm.

Among the results contained in the thesis only those concerning the manipulation strategies
were published in conference materials of a very good computer science conference COCOON
(Core A). The remaining work is currently under review. However, it is worth noting that
Mr. Pratik Ghosal is also a coauthor of two papers published in computer science conference
materials (including one excellent conference SODA) and one paper published in Theoretical
Conference Science. As for this stage of the career, these achievements should be considered
very good.

Conclusion

The presented thesis satisfies, with big margin, all the statutory and customary requirements
for PhD dissertations and it certainly constitutes the basis for awarding a PhD degree in the
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field of computer science to Mr. Pratik Ghosal.



List of errors
Page iii, line 10, comma at the beginning of the line.
Page 12, line 15, it is: O + |U/2|, should be: O + |U|/2.
Page 15, line 4, Alive(i) is not defined.
Page 23, line -8, it is: Algorithm 2, should be: Algorithm 3.
Page 23, line -2, it is: we move ps to AE,,, should be: we move (ay,p2) to AE,.
Page 24, line 7, Alive(Z) is not defined, but it is used throughout the dissertation.
Page 25, line -6, line 8 in Algorithm 3 contains “else” statement.
Page 27, line -13, a is not defined.
Page 29, line -7, it is: Let P’ be any even length M-alternating path starting at ag. Should be:
Let P’ be any even length M-alternating path starting at ag and ending in V — C.
Page 31, line 11, it is: 1(d), should be: 1(b).
Page 34, line 1, it is: very, should be: every.
Page 35, line 15, it is: k41 edges of N N&; and k edges of M'NE&;. There is probably something
wrong here and throughout the paragraph. Did you mean: k edges of N N &; and k + 1 edges of
M'NE&s.
Page 36, line 14, lines pointing to Algorithm 4 are incorrect.
Page 36, line 15, it is augmenting or non-augmenting, should be: non-augmenting or augmenting.
Page 39, line 16 and line -4, it is: line 17, should be: line 16.
Page 42, line -2: two “end of proof” boxes.
Page 54, line 19, comma at the beginning of the line.
Page 64, line 8, “dot” is missing.
Page 66, line -6, it is: Figure 1, should be: Figure 4.4.
Page 70, line -3: it is quite unfortunate to denote the graph by G’. In the next line we have G,
which means either the reduced graph of G; or the graph obtained from G’ by taking edges of
rank at most < 4.
Page 78, line -7, it is: has, should be: have.
Page 89, line -9: is this constraint correct? We have B} # Bj. Are not we in the case 2.(a).iii in
this situation? Is the dual program properly defined in this example? Why we do not have y},

wh in the objective function of the dual?

Page 93, line 7, it is: zi, j, should be: z; ;.
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