
Uniwersytet Wrocławski

Wydział Matematyki i Informatyki

Nowoczesne rozwiązania online

dla pradawnych problemów grafowych

Autor:

Paweł Schmidt

Rozprawa sporządzona pod opieką

dr. hab. Marcina Bieńkowskiego

2021

ii

University of Wrocław

Faculty of Mathematics and Computer Science

Modern online algorithms

for ancient graph problems

Author:

Paweł Schmidt

Doctoral dissertation supervised by

dr. hab. Marcin Bieńkowski

2021

iv

Contents

1 Introduction 1

1.1 Deterministic vs. randomized algorithms . 1

1.2 Why deterministic algorithms are important . 3

1.3 Known determinization techniques . 4

1.4 Overview of results and thesis outline . 5

1.5 Related offline algorithms . 9

1.6 Bibliographical notes . 10

2 Non-metric facility location 11

2.1 Introduction . 11

2.2 Fractional solution . 16

2.3 Deterministic rounding . 23

2.4 Handling large aspect ratios . 27

2.5 Remarks and applications . 29

3 Matching with delays 33

3.1 Introduction . 33

3.2 Algorithm . 36

3.3 Analysis . 37

3.4 Lower bounds and tightness . 45

4 Steiner tree leasing 47

4.1 Introduction . 47

v

vi CONTENTS

4.2 HST embeddings . 50

4.3 Interval model . 52

4.4 Algorithm construction . 53

4.5 Analysis . 55

5 Generalized k-server problem in uniform metrics 61

5.1 Introduction . 61

5.2 Hydra game . 63

5.3 Improved algorithm for generalized k-server problem 67

5.4 Lower bound . 72

5.5 Final remarks . 76

6 Afterword 79

Chapter 1

Introduction

With the spread of broadband internet connections, gaming over the internet has become

a primary way of playing competitive games (e.g., real-time strategies or collectible card games).

Players typically log in to a service that provides the functionality of finding another person

who is willing to compete. If there are many available players, deciding who gets matched

first and who has to wait is important for maintaining people’s satisfaction with the service.

The satisfaction might depend not only on the time spent in a queue but also on a similarity

of matched players’ skills (losing a game to a much more skilled player or winning a game

against a beginner is not fun at all). This is an example of a problem called matching with delays.

The process of matching players happens in real-time, that is, future (playing) requests are

not known. Standard algorithmic approach, where an offline algorithm reads complete input

data and outputs a solution is useless here. This motivates the construction of online algorithms,

which have to satisfy all demands on the fly without prior knowledge of the future. The quality

of an online algorithm is measured with competitive ratio [BE98], which is a worst-case ratio of

the cost of an online algorithm to the cost of the optimal offline solution on the same input.

This dissertation is devoted to the construction of efficient online algorithms for classical

graph problems: facility location, Steiner tree and perfect matching, which have been extensively

studied in the offline regime and also k-server, which is specific to online computation. We put

a special emphasis on deterministic algorithms and determinization techniques.

1.1 Deterministic vs. randomized algorithms

In the years after Sleator and Tarjan [ST85] initiated the study on online algorithms, the

development of randomized algorithms followed the design of deterministic ones. Most of

1

2 CHAPTER 1. INTRODUCTION

this early research involved randomized algorithms that were randomizations of previous

deterministic ones. The examples include, but are not limited to, list update [ST85, RWS94],

paging [ST85, FKL+
91], metrical task systems on uniform metrics [BLS92], TCP acknowledge-

ment [DGS01, KKR03], and ski-rental [KMRS88, KMMO94].

This trend was somehow reversed with the seminal work of Bartal [Bar96], who designed

a method of approximating an arbitrary graph (finite metric space) by a random hierarchically

well-separated tree (HST) with moderate, polylogarithmic distortion. (An HST is a rooted tree

in which edge lengths decrease exponentially along any root-to-leaf path.) This approxima-

tion was subsequently improved [Bar98, FRT04] and allowed for transforming a competitive

algorithm (deterministic or randomized) for trees into a randomized algorithm for general

graphs with the additional logarithmic factor in the competitive ratio. As a result, analyses of

several randomized algorithms were simplified and new algorithms were created. Examples

include randomized algorithms for metric labeling, group Steiner tree, buy-at-bulk network

design [FRT04], metrical task systems [Bar96, FRT04], constrained page migration [Bar96],

distributed paging [ABF98], minimum metric bipartite matching [MNP06], and matching with

delays [AGGP17, AJF18].

Another stream of randomized algorithms started with the work of Buchbinder and

Naor [BN09]. They provided a framework for designing and analyzing algorithms (mostly

for covering or packing problems) using of online primal-dual technique. This framework

incorporates the multiplicative weight update method and, in the typical setting, produces

a fractional solutions worse by a logarithmic (in the size of the linear program) factor than

the optimal solution. Usually, transforming a fractional solution into an algorithm requires

further efforts as the linear program does not describe a distribution on configurations of the

algorithm, but only its marginals. For example, the linear program for caching problem defines

probabilities of pages being in the cache [BBN12]. To obtain an algorithm, these probabilities

need to be translated into configurations of the cache. While there are multiple randomized

algorithms using this framework, it is rarely clear how to deterministically construct an integral

solution from a fractional one.

1.1.1 Achievable performance

In the area of online algorithms, it is common that for some problem there is a large gap

between competitive ratios achievable by randomized algorithms and deterministic ones. For

example, in caching problems [ST85, You02], the gap is exponential: the ratio of deterministic

1.2. WHY DETERMINISTIC ALGORITHMS ARE IMPORTANT 3

algorithms is at least linear in the cache size, while the ratio of the best randomized algorithm

is logarithmic [FKL+
91, BBN12, ACER19].

On the other hand, in some cases the performance of deterministic algorithm asymptotically

matches that of randomized solutions. Examples include set cover [AAA+
09], metric facility

location [Mey01, Fot08]), and also various problems where a constant-competitive solutions

exist (e.g., TCP acknowledgement [DGS01, KKR03], or the list-update problem [ST85, RWS94]).

In general, the existence of a randomized algorithm does not give much insight into the

existence of deterministic solutions. This is in strong contrast to approximation algorithms,

where often randomized algorithms can be derandomized [WS11]. In this thesis, we try to

shed some light on this topic.

1.2 Why deterministic algorithms are important

In the previous section, we highlighted that there are limits that deterministic algorithms

cannot break. Why then do people keep studying deterministic algorithms? Besides the

theoretical importance of the results, there are other, practical reasons.

First, the cost analysis of randomized algorithms ensures low cost only in expectation. This

is a somewhat weak guarantee, which might “ignore” extremely unsuccessful executions of the

algorithm. This is not acceptable in situations when exceptional safety measures are required,

e.g., in banking.

This problem can be usually mitigated in approximation algorithms [WS11], where the

probability of bad events can be commonly dampened by running the algorithm repeatedly and

taking the best of all output solutions. The bad-event probability can be reduced exponentially

with linear number of repetitions. This approach is, however, not applicable in an online regime,

where algorithms have to make irrevocable decisions with every piece of input sequence they

read.

Second, there is a recent need originating from the machine learning and automated trading

systems to design explainable algorithms. An explainable algorithm can justify its decisions

to humans (as opposed to black-box algorithms) [BH21]. There, the use of randomness can

potentially make algorithm’s decision unclear to observers.

4 CHAPTER 1. INTRODUCTION

1.3 Known determinization techniques

While the most of deterministic algorithm constructions are ad hoc, there are some known

determinization techniques used in online algorithms. In this section, we briefly review a few

of them.

1.3.1 Method of conditional expectations and pessimistic estimators

In the method of conditional expectations [Rag88], one designs a random experiment

(algorithm) that solves the optimization problem and then derandomizes this algorithm by

a sequential rounding of random variables. A variable is assigned the value that optimizes

the conditional expected value of the remaining (not yet rounded) random choices. The

resulting deterministic solution is as good as the randomized one. The crux is in computing the

conditional expected values or finding their viable (pessimistic) estimate [You95]. The method

of conditional expectations has proven useful in approximation algorithms. For instance, the

approximation algorithms for max-cut and max-sat are obtained this way [WS11].

In principle, the above process can be applied to online algorithms. However, bounding

the expected value of all future random choices of a randomized algorithm is troublesome or

not possible at all. So far, the only successful implementation of this technique is the set cover

problem [BN09]. We show a new application of this technique in Chapter 2 for the non-metric

facility location problem.

1.3.2 HST approximation

While it is not clear how to obtain a deterministic algorithm from a randomized algorithm

based on HST approximation, the existence of approximation itself can be helpful to analyze some

deterministic algorithms [Umb15]. The key idea is that for some problems, the optimal solution

on a tree is well-structured and easily computable. In such a situation, the cost of the optimal

solution on a random tree is a good approximate of the optimal solution for the original graph.

Given that, it remains to design an algorithm whose cost can be compared to the cost of the

optimal solution on any random tree approximating the graph. As the graph approximation

does not “glue” far vertices, some clustering algorithms can be analyzed this way.

The technique was successfully applied to simplify the analysis of the greedy algorithm

solving Steiner tree [IW91] and to design and analyze new algorithms for Steiner trees, forests

1.4. OVERVIEW OF RESULTS AND THESIS OUTLINE 5

and networks, connected facility location, and rent-or-buy problems [Umb15]. We use this

technique to obtain a deterministic algorithm for the Steiner tree leasing problem in Chapter 4.

1.3.3 Adaptive adversaries

The standard definition of the competitive ratio for randomized algorithms assumes a so-

called oblivious adversary, who presents an input sequence, which does not depend on the

random actions of the algorithm (it may depend on its probability distribution, though).

An overwhelming majority of algorithms uses this definition.

This notion can be strengthened to take into account the random choices of the algorithm.

The stronger adaptive online adversary [BBK+
94] may access past (random) decisions of the

randomized algorithm and on this basis construct the input sequence. The adaptive online

adversary has to simultaneously construct its own solution to which the algorithm is compared.

Adaptive online adversary and determinization are connected in a surprising way. Namely,

proving that a randomized algorithm is c-competitive against the adaptive online adversary,

implies the existence of c2-competitive deterministic algorithm [BBK+
94]. This property has

been used in the past to obtain, among others, better deterministic online algorithms for the

page migration problem [Wes94] and the weighted k-server problem [CV13].

1.4 Overview of results and thesis outline

Our primary goal is to give algorithms that minimize the competitive ratio defined as follows.

Definition 1.1. A deterministic algorithm Alg is c-competitive if there exists a constant β (independent

of the online part of the input) such that, for any input I , it holds that

Alg(I) ≤ c ·Opt(I) + β,

where Alg(I) is the cost of the solution ouput by Alg and Opt(I) is the cost of the optimal offline

solution to I . When β is equal to 0, we say that Alg is strictly c-competitive.

For randomized algorithms, the cost of the algorithm is replaced by the expected cost (the expectation

is taken over random choices of the randomized algorithm).

The running time of an online algorithm is of secondary importance; the only limit imposed

on the algorithm is uncertainty about future requests. This is a typical assumption in this area.

Some extreme examples include recent breakthrough results on k-server problem [BCL+
18,

6 CHAPTER 1. INTRODUCTION

Lee18], where the authors answer purely information-theoretic question: “Is there enough

information in the input sequence to be competitive?”. They show the existence of a competitive

solution (in their case, it is a curve in a high-dimensional space), which is not necessarily

computable in the typical algorithmic sense. Having said that, most of our algorithms run in

polynomial time.

Non-metric facility location. In the facility location problem [Shm00], which have been

extensively studied both in operations research and in computer science, there is a set of

facilities F (each with a certain opening cost) and clients C. There are also client-facility

connections, which have lengths that can either satisfy the triangle inequality (metric facility

location) or be arbitrary (non-metric facility location). The goal is to open a subset of facilities

and connect each client to an open facility. The total cost (the sum of opening and connection

costs) is subject to minimization.

In the online scenario, we distinguish between potential clients (the above-mentioned set C)

and clients A ⊆ C that eventually appear in the input sequence. The best online solution

to non-metric facility location is a randomized algorithm by Alon et al. [AAA+
06] attaining

competitive ratio of O(log |F| · log |A|). It computes a fractional solution of an LP-relaxation

of the problem and then randomly rounds it to achieve a competitive integral solution. To

obtain a deterministic algorithm, one could reduce the non-metric facility location instance

to an instance of the set cover problem and then apply the deterministic algorithm by Alon

et al. [AAA+
09]. The standard text-book reduction between these two problems requires an

exponential blow-up of the input size. However, reduction of Kolen and Tamir [KT90] does not

have this disadvantage and leads to an O((log |C|+ log |F|) · (log |C|+ log log |F|))-competitive

algorithm.

The main result of Chapter 2 is a construction of a historically first published deterministic

algorithm for the online non-metric facility location problem. This algorithm attains the

competitive ratio of O(log |F| · (log |C|+ log log |F|)) and is optimal up to log log factors.

Our algorithm relies on online primal-dual framework [BN09] and utilizes a new LP relax-

ation of non-metric facility location. To service a client, it computes a fractional solution, which

is then rounded deterministically. The main difficulty of the rounding lies in maintaining de-

pendencies of purchased facilities and edges: rounding facilities and client-facility connections

separately might lead to purchasing an edge to a closed facility. In our approach, the required

dependency is not enforced by the LP constraints but follows from the order in which the

algorithm increases LP variables.

1.4. OVERVIEW OF RESULTS AND THESIS OUTLINE 7

Matching with delays. Chapter 3 discusses the aforementioned matching with delays (for

which we gave the gaming example). The first online algorithm solving the problem of

matching with delays was given by Emek et al. [EKW16], who presented a randomized

O(log2 n + log ∆)-competitive algorithm. There, n is the number of points in the underlying

metric space (a player is characterized by a number of different parameters and corresponds

to a point of a metric space) and ∆ is its aspect ratio (the ratio between the largest and the

smallest distance). The competitive ratio was subsequently improved by Azar et al. [ACK17] to

O(log n).

In Chapter 3, we present the historically first deterministic algorithm for an arbitrary metric

space (previous deterministic algorithms were known only for simple spaces [ESW17, ACK17]),

whose competitive ratio is O(mlog2 5.5) = O(m2.46), where 2m is the number of requests. Our

online algorithm uses a simple, local, semi-greedy scheme to find a suitable matching pair.

That is, each client independently attempts to find (in a range that increases in time) someone

who has waited roughly the same amount of time.

Steiner tree leasing. Many online problems have the common property that the objects

purchased by the algorithm are persistent. For example, open facilities in facility location

problem and matching edges in matching with delay problem do not disappear with time.

In Chapter 4, we focus on a problem that does not have this property. In the Steiner tree leasing

problem edges are not bought, but leased for a certain period and disappear when the lease

period ends.

In this problem, there is a given graph with a distinguished root vertex. An algorithm has

to connect all requested vertices to the root with leased edges. That is, there must exist a path

of leased edges between a vertex and the root at the time when this vertex appears in the input

sequence.

A randomized O(log L · log n)-competitive algorithm was given by Meyerson [Mey05] for

inputs with L different lease types and graphs with n vertices. This algorithm first approximates

a graph by a random tree with distortion of O(log n) [FRT04] and then, for each edge of the

tree runs the randomized O(log L)-competitive algorithm for the parking permit problem.

We construct a deterministic algorithm, which can be seen as a derandomization of Meyer-

son’s algorithm. The algorithm leases a new edge if there were “sufficiently many” requests

served “recently” in a “small” neighborhood of this edge. In the analysis, we use techniques

presented by Umboh [Umb15]: We exploit the fact that vertices that are far from each other

in the graph, are far also in any random tree approximating this graph. This fact allows us

8 CHAPTER 1. INTRODUCTION

to charge the cost of a deterministic algorithm to the cost of optimal solution on a random

tree. The resulting competitive ratio is O(L · log k) for inputs with L different lease types and

k different requested vertices. Our algorithm is competitive even on infinite metric spaces,

which is not the case of randomized Meyerson’s algorithm [Mey05].

Generalized k-server problem. In all mentioned problems, the algorithm purchases or rents

structures in graphs. The last problem discussed in the dissertation is different.

The k-server problem introduced by Manasse et al. [MMS90], is one of the most well-studied

and influential cornerstones of online analysis. The problem definition is deceivingly simple:

There are k servers, starting at a fixed set of k points of a metric space M. An input is a sequence

of requests (points of M) and to service a request, an algorithm needs to move at least one

server to the requested position.

In Chapter 5, we study a natural extension of the k-server problem, called the generalized

k-server problem [KT04, SS06], where each server si remains in its own metric space Mi. The

request is a k-tuple (r1, . . . , rk), where ri ∈ Mi, and to service it, an algorithm needs to move

servers, so that at least one server si ends at the requested position ri. The original k-server

problem corresponds to the case where all metric spaces Mi are identical and each request is of

the form (r, . . . , r).

Algorithms attaining competitive ratios that are functions of k exist only in a few special

cases of the generalized k-server problem. The case of k = 2 has been solved by Sitters and

Stougie [SS06, Sit14], who gave constant competitive algorithms for this setting. Results for

k ≥ 3 are known only for simpler metric spaces.

A uniform metric case describes a scenario where all metrics Mi are uniform with pairwise

distances between different points equal to 1. For this case, Bansal et al. [BEKN18] recently

presented an O(2k · k)-competitive deterministic algorithm and an O(k3 · log k)-competitive

randomized one. The deterministic competitive ratio is at least 2k − 1 already when metrics Mi

have two points [KT04]. Furthermore, using a straightforward reduction to the metrical task

system (MTS) problem [BLS92], Bansal et al. show that the randomized competitive ratio is at

least Ω(k/ log k) [BEKN18].

In Chapter 5, we give a randomized O(k2 · log k)-competitive algorithm for the uniform

metric case of the generalized k-server problem improving over the O(k3 · log k) bound by

Bansal et al. [BEKN18]. Furthermore, we strengthen their lower bound showing that no

randomized algorithm can be better than Ω(k)-competitive even when each metric space Mi

consist of at least two points.

1.5. RELATED OFFLINE ALGORITHMS 9

Our algorithm is phase-based: a single phase lasts until it is certain that requests of this

phase cannot be serviced without cost. To track the phases and decide next moves, the

algorithm computes a solution to an abstract Hydra game, which can be of independent interest.

1.5 Related offline algorithms

Offline counterparts of problems discussed in this dissertation have been studied before.

We mention these results for completeness.

The metric variant of the facility location was studied in a series of papers [BA10, CG05,

CS03, JMM+
03, JMS02,KPR00,Li13,MYZ06,STA97]. Currently, the best known algorithm attains

the approximation ratio of 1.488 [BA10, Li13]. The best approximation ratio for the non-metric

one is, however, O(log |C|) [Hoc82]. Lower bounds of 1.463 for metric [GK98] and Ω(log |C|)

for non-metric variant [Fei98] hold unless NP ⊆ DTIME[nO(log log n)].

The (non-leasing) Steiner tree problem [WH16] is APX-hard [BP89]. Starting from a trivial

2-approximation, there was a series of improvements [Zel93, KZ97, PS00, RZ05, BGRS10]. The

most recent of these results, by Byrka et al. [BGRS10], with approximation ratio of 1.39,

has an interesting property: it uses a natural LP relaxation of the problem and the iterated

randomized rounding, which yields a solution better than the known integrality gap of this

linear program, which is 1.55. The Steiner tree leasing has been studied by Anthony and Gupta.

They show a surprising connection to multistage stochastic optimization [AG07], which yields

an O(min(L, log n))-approximation algorithm for inputs with n vertices and L lease types.

The offline variant of the generalized k-server problem problem has not drawn much

attention yet. The closest problem studied in an offline regime is k-server, which admits

a polynomial time algorithm [CKPV91]. This algorithm reduces finding of an optimal k-server

strategy into a flow computation in a tailored graph.

Finally, the offline problem of matching with delays is easily solvable in polynomial time,

by an algorithm that finds a min-cost matching [Sch03] in a time-augmented metric space

(that is, the distance between two points becomes their distance in the metric space plus the

difference in arrival times).

10 CHAPTER 1. INTRODUCTION

1.6 Bibliographical notes

The results presented in the thesis were previously published in preliminary form in various

conference proceedings.

The material in Chapter 2 is an extended form of results that are accepted for publication at

the 38th International Symposium on Theoretical Aspects of Computer Science (STACS2021) [BFS21].

The algorithm for matching with delays from Chapter 3 appeared in the 15th Workshop on

Approximation and Online Algorithm (WAOA2017) [BKS17b]. Chapter 4 on the Steiner tree

leasing problem is based on a paper, which appeared in the 15th Algorithms and Data Structures

Symposium (WADS2017) [BKS17a]. Finally, results on generalized k-server problem from

Chapter 5 were published in proceedings of the 30th International Symposium on Algorithms and

Computation (ISAAC2019) [BJS19].

Chapter 2

Non-metric facility location

2.1 Introduction

The facility location problem [ABM16] is one of the best-known examples of network design

problems, extensively studied both in operations research and in computer science. Its simple

definition, NP-hardness, and rich combinatorial structure have led to developments of tools

and solutions in key areas of approximation algorithms, combinatorial optimization, and linear

programming.

An instance of the facility location problem consists of a set F of facilities, each with a certain

opening cost, and a set C of clients. F and C can be seen as two sides of a bipartite graph.

The undirected edges between them have lengths that can either satisfy the triangle inequality

(metric facility location) or be arbitrary (non-metric facility location). The goal is to open a subset

of facilities and connect each client to an open facility. The total cost (the sum of opening

and connection costs) is subject to minimization. In the metric scenario, by taking a metric

closure, one can assume that each facility is reachable by each client, but it is not the case for

the non-metric variant.

Instances and objectives. In this chapter, we focus on an online variant of the non-metric

facility location problem. We first formalize the offline variant in a way that makes a connection

to the online variant more apparent.

A facility-client graph G = (F, C, E, cost) is a bipartite graph, whose one side is the set F

of facilities and another side is the set of clients C. Set E ⊆ F× C contains available facility-

client connections (edges). We use function cost to denote both costs of opening facilities and

connection costs (edge lengths). All costs are non-negative.

11

12 CHAPTER 2. NON-METRIC FACILITY LOCATION

An instance of the non-metric facility location problem is a pair (G; A), where G =

(F, C, E, cost) is a facility-client graph and A ⊆ C is a subset of active clients. A feasible solution

to such instance is a set of open (purchased) facilities F′ ⊆ F and a subset of purchased

edges E′ ⊆ E, such that any active client c ∈ A is connected by a purchased edge to an open

facility. The cost of such solution is equal to ∑ f∈F′ cost(f) + ∑e∈E′ cost(e).

For any facility-client graph G, we define its aspect ratio ∆G as the ratio of the largest to

smallest positive cost in G. These costs include both facilities and connection costs. (In the

standard definition of the aspect ratio, only distances are taken into account.) Note that the

aspect ratio is a property of G and is independent of the set of active clients A.

Online scenario. In an online variant of the facility location problem, the facility-client graph G

is known in advance, but neither elements of A nor its cardinality are known up-front by

an online algorithm Alg. The clients from A appear one by one. Upon seeing a new active

client, Alg may purchase additional facilities and edges, with the requirement that facilities

and edges purchased so far must constitute a feasible solution to all presented active clients.

The total cost of Alg is denoted by Alg(G; A). (We sometimes use Alg(G; A) to also denote

the solution computed by Alg.) Purchase decisions are final and cannot be revoked later. The

goal is to service all requests and minimize the total cost.

2.1.1 Previous work on non-metric facility location

For the online metric facility location, the problem was resolved over ten years ago by

Meyerson [Mey01] and Fotakis [Fot08]: the lower and upper bounds on the competitive

ratio are Θ(log |A|/ log log |A|), both for deterministic and randomized algorithms. Simpler

deterministic algorithms attaining slightly worse competitive ratio of O(log |A|) were given by

Anagnostopoulos et al. [ABUH04] and Fotakis [Fot07]. Note that the optimal competitive ratio

in the metric case is independent of the set C of potential clients.

2.1.2 Previous work on online non-metric facility location

For the non-metric facility location, the first and currently best online algorithm was

a randomized algorithm by Alon et al. [AAA+
06]. It achieves the competitive ratio of O(log |F| ·

log |A|). It is based on solving a natural fractional relaxation of the problem: there is a fractional

opening variable y f for each facility f , and a connection variable xc, f for a client c and a covering

facility f (facility to which c could be connected). Once a client c arrives, for each covering

2.1. INTRODUCTION 13

facility f independently, their algorithm increases either y f or xc, f , whichever is smaller, using

multiplicative update method (see, e.g., [AHK12]). The client c is considered fractionally served

once the sum of terms min{xc, f , y f } over all covering facilities is at least 1. The resulting

competitive ratio is O(log |F|).

The computed fractional solution can be then rounded using a random threshold θ f common

for an opening variable y f and all connection variables involving facility f . Once any variable

exceeds its threshold, it is rounded up to 1 and the corresponding object (facility or connection)

is purchased. Dynamically adjusting θ f to have expectation Θ(1/ log |A|) guarantees that the

resulting integral solution is feasible with high probability and the rounding part incurs a factor

of O(log |A|) in the competitive ratio.

Before our result, first given in [BFS21], no non-trivial deterministic algorithm was published.

In particular, the online network design problems (including the non-metric facility location

problem) have been listed as unresolved challenges by Buchbinder and Naor [BN09, Section 1.1].

That said, the non-metric facility location can be reduced to a set cover. A usable reduction

(not inducing an exponential blow-up of the input size) was given by Kolen and Tamir [KT90]:

it preserves the solution costs up to constant factors and creates a set cover instance consisting

of m = Θ(|F|+ |C| · log ∆G) sets and n = Θ(|C| · log ∆G) elements. We present this reduction

in details in Section 2.5.1. Using doubling techniques described in Section 2.4, one could

assume that ∆G = O(|F| · |C|). Applying the deterministic algorithm for the online set cover

problem by Alon et al. [AAA+
09] yields a solution whose competitive ratio is O(log m · log n) =

O((log |C|+ log |F|) · (log |C|+ log log |F|)).

2.1.3 Our result

In this chapter, we improve the bound above, replacing the first factor of O(log |C|+ log |F|)

by O(log |F|). This is an asymptotic improvement in a typical scenario where |F| � |C|.

Theorem 2.1. There exists a deterministic polynomial-time O(log |F| · (log |C|+ log log |F|))-competi-

tive algorithm for the online non-metric facility location problem on set F of facilities and set C of

clients.

Our algorithm attains a nearly optimal competitive ratio, as no deterministic algorithm

can have a ratio smaller than Ω(log |F| · log |C|/(log log |F|+ log log |C|)). This follows by the

lower bound for the online set cover problem [AAA+
06, AAA+

09] and holds even for uniform

facility costs. If we restrict our attention to the polynomial-time deterministic solution, then

a stricter lower bound of Ω(log |F| · log |C|) holds (assuming BPP 6= NP) [Kor04].

14 CHAPTER 2. NON-METRIC FACILITY LOCATION

Challenges. The description of the randomized algorithm by Alon et al. [AAA+
06] given

above seems deceptively simple, but it hides an important and subtle property, implicitly

exploited by the authors. Namely, the threshold θ f is common for facility f and all connections

to it. This ensures the necessary dependency: once min{xc, f , y f } ≥ θ f , the rounding purchases

both facility f and a connection from c to f . (Note that the left-hand side of this inequality is the

amount that their fractional solution controls.)

It is unclear how to directly extend this property to deterministic rounding. A straightfor-

ward attempt would be to focus on facilities only and round them in a deterministic fashion

ensuring the necessary coverage of each client. However, neglecting the connection costs in the

rounding process easily leads to a situation, where the facilities are rounded “correctly”, but

the cost of connecting a client to the closest open facility in the integral solution is incomparably

larger than the corresponding fractional cost.

We note that all known deterministic schemes that round fractional solutions generated

by the multiplicative updates operate in rather limited scenarios, where elements have to be

covered or packed and all important interactions between elements are handled at the time

of constructing the fractional solution. This is the case for the deterministic rounding for the

set cover problem [AAA+
09, BN09] and the throughput-competitive virtual circuit routing

problem [AAP93, BN09]. These methods are based on derandomization of the method of

pessimistic estimators [Rag88] in an online manner, by transforming a pessimistic estimator

into a potential function [You95] that can be controlled by the deterministic rounding process.

Our techniques. In our solution, we create a new linear relaxation of the problem. We first

round the graph distances to powers of 2. For any client, we cluster facilities that have the same

distance to this client. (Note that such clusters are client-dependent.) To solve the fractional

variant, we run two schemes in parallel: we increase connection variables xc,t corresponding to

clusters at distance t, and increase facility variables y f for all facilities in “reachable” clusters

(where the corresponding connection variables are 1). The increases in these variables use two

different frameworks: dual fitting for linear increases of connection variables and a primal-dual

scheme involving multiplicative updates for facility variables. Ensuring an appropriate balance

between these two different types of updates is one of the technical difficulties that we tackle

in this chapter.

We stop increasing variables once there exists a collection of clusters that are both “frac-

tionally open” (sum of variables y f within these clusters is Ω(1)) and “reachable” by the

2.1. INTRODUCTION 15

considered client. To argue about the existence of such a collection, we use both LP inequalities

and structural properties of our fractional algorithm.

Finally, we construct a deterministic rounding routine. We focus on facilities only, neglecting

whether particular clients are active or not and how far they are from a given facility. However,

we strengthen rounding properties, ensuring, for (some) collections of clusters, that if the sum

of opening variables in these collections is Ω(1), then the integral solution contains an open

facility in one of these clusters. This ensures that, for a considered client c, the integral solution

contains a facility whose distance from c is asymptotically not larger than the cost invested for

connecting c in the fractional solution. Ultimately, this yields the desired dependency between

facilities and connections.

Note about up-front knowledge of the facility-client graph. Unlike for the randomized

variant, obtaining sub-linear guarantees for a deterministic solution requires knowing a priori

the set of potential client-facility connections. To see this, consider a graph of |F| facilities

with unit opening costs and the set of |C| = |F| clients. The graph edges are constructed

dynamically as clients are activated and all revealed possible connections are of cost 0. The

first active client can be connected to all facilities. Each subsequent client can be connected to

all facilities but the ones already open by an algorithm. This way an online algorithm needs

to eventually open all facilities, for a total cost of |F|. On the other hand, the offline optimal

algorithm can open the last facility opened by an online algorithm and connect all clients to

this facility paying just 1. Thus, under the unknown-graph assumption, the competitive ratio

of any deterministic algorithm would be at least |F|.

2.1.4 Preliminaries and chapter organization

Let TG contain all powers of two between the largest and the smallest positive distance

(inclusively) and also number 0. In particular, TG contains all distances in G and |TG| ≤

2 + log ∆G. Whenever G is clear from the context, we drop the G subscript.

We may assume that F contains at least two facilities and C contains at least two clients, as

otherwise the problem becomes trivial. For a facility f ∈ F, let set(f) be the set of clients that

may be connected to f . For any client c ∈ C and distance t ∈ T, cluster Fc,t contains all facilities

that are incident to c using edges of cost t. Note that for a fixed c, clusters Fc,t are disjoint (no

client has two connections of different costs to the same facility).

16 CHAPTER 2. NON-METRIC FACILITY LOCATION

Powers-of-two assumption. In the whole chapter, we assume that all facilities and connection

costs are either equal to 0 or are powers of 2 and are at least 1. This can be easily achieved by

initial scaling of positive costs and distances, so that they are at least 1 and rounding positive

ones up to the nearest power of two. This transformation changes the competitive ratio at most

by a factor of 2.

Chapter overview. Our core approach is to solve a carefully crafted fractional relaxation of

the problem (Section 2.2), and then round it in a deterministic fashion (Section 2.3). This

way, we obtain a deterministic online algorithm Int that on any input (G = (F, C, E, cost); A)

computes a feasible solution of cost

Int(G; A) ≤ O(log |F| · (log |C|+ log log ∆G)) ·Opt(G; A) + 2 ·max
f∈F

cost(f).

Moreover Int runs in time poly(|G|, |A|, maxe∈E cost(e), max f∈F cost(f)). In Section 2.4, we

apply doubling and edge pruning techniques, to get rid of dependencies on costs in the running

time and on ∆G in the competitive ratio, achieving guarantees of Theorem 2.1.

2.2 Fractional solution

We fix an instance (G = (F, C, E, cost); A) of the online non-metric facility problem. For

each facility f , we introduce an opening variable y f ≥ 0 (fractional opening of f) and for each

client c and each distance t ∈ T a connection variable xc,t ≥ 0. Intuitively, xc,t denotes how

much, fractionally, client c invests into connections to facilities from cluster Fc,t. For any set F′

of facilities we use y(F′) as a shorthand for ∑ f∈F′ y f .

Primal Program. After k clients from A arrive (we denote their set by Ak), we consider the

following linear program Pk.

minimize ∑
f∈F

cost(f) · y f + ∑
c∈Ak

∑
t∈T

t · xc,t

subject to xc,t ≥ zc,t for all c ∈ Ak, t ∈ T,

y(Fc,t) ≥ zc,t for all c ∈ Ak, t ∈ T,

∑
t∈T

zc,t ≥ 1 for all c ∈ Ak,

and non-negativity of all variables.

2.2. FRACTIONAL SOLUTION 17

Serving Constraints. The LP constraints combined are equivalent to the set of the following

(non-linear) requirements

∑
t∈T

min {xc,t, y(Fc,t)} ≥ 1 for all c ∈ Ak. (2.1)

We call (2.1) for client c the serving constraint for client c. In our description, we omit variables zc,t

and the original constraints, ensuring only that the serving constraints hold and implicitly

setting zc,t = min{xc,t, y(Fc,t)}.

The LP above is indeed a valid relaxation of the facility location problem. To see this, take

any feasible integral solution. For any facility f opened in the integral solution, set variable y f

to 1. For each client c connected to facility f , set variable xc,τ to 1, where τ = cost(f , c). This

guarantees that min{xc,τ, y(Fc,τ)} = 1, and thus the serving constraint (2.1) is satisfied for each

client c.

Dual Program. The program Dk dual to Pk is

maximize ∑
c∈Ak

γc

subject to γc ≤ αc,t + βc,t for all c ∈ Ak, t ∈ T,

αc,t ≤ t for all c ∈ Ak, t ∈ T,

∑
c∈set(f)∩ Ak

βc, cost(f ,c) ≤ cost(f) for all f ∈ F,

and non-negativity of all variables.

2.2.1 Overview

Our algorithm Frac creates a solution to Pk, ensuring that the serving constraint (2.1) holds

for all clients c ∈ Ak. As outlined in the introduction, the computed solution guarantees some

additional properties that are useful for the rounding part later.

Whenever a client c arrives, Frac increases connection variables xc,t one by one starting

from the smallest t, at the pace proportional to 1/t. We ensure that xc,t ∈ [0, 1], i.e., once any of

these variables reaches 1, Frac stops increasing them. A distance t, for which xc,t = 1, is called

saturated.

In parallel to manipulating variables xc,t, Frac increases all variables y f for facilities

reachable from client c using saturated distances. The variables y f are increased using the

multiplicative update rule [AHK12] (scaled appropriately to take costs of facilities into account).

18 CHAPTER 2. NON-METRIC FACILITY LOCATION

Together with the solution to Pk, Frac also constructs an almost-feasible solution to Dk.

That is, its solution to Dk is feasible when all dual variables are scaled down by a factor of

O(log |F|). By the weak duality, the scaled-down value of this solution serves as a lower-bound

for the optimum. Thus, as typical for the primal-dual type of analysis, the dual variables can

be thought of as budgets whose increase balances the increase of primal variables.

2.2.2 Algorithm FRAC

At the very beginning, before any client arrives, Frac sets all variables y f to 0 for all

positive-cost facilities and to 1 for zero-cost ones. There are no other variables as the set A0 of

active clients is empty. Note that the dual program already contains the last type of constraints,

but the sums on their left-hand sides range over empty sets of β variables, and hence these

constraints are trivially satisfied.

Whenever a new client c arrives in step k, Frac updates the primal (dual) programs from

Pk−1 (Dk−1) to Pk (Dk), and then computes a feasible solution to Pk (based on the already

created solution to Pk−1) and a nearly-feasible solution to Dk.

New variables in primal and dual programs: Frac sets xc,t ← 0 for all t ∈ T \ {0} and sets

xc,0 ← 1. In the dual solution, it sets γc ← 0, αc,t ← 0 and βc,t ← 0 for all t ∈ T.

Update primal program: A new serving constraint ∑t∈T min{xc,t, y(Fc,t)} ≥ 1 appears in the

primal program (and is violated unless y(Fc,0) ≥ 1). As we never decrease primal

variables, the serving constraints (2.1) that existed already in Pk−1 are satisfied and will

not become violated.

Update dual program: New constraints appear in the dual program and new variables βc,t

appear on the left-hand side of the already existing inequalities. Since the new variables

are initialized to 0, the validity of all dual constraints is unaffected.

Update primal and dual solutions: Let T1
c = {t ∈ T : xc,t ≥ 1} be the set of saturated

distances, i.e., initially Frac sets T1
c ← {0}. While the serving constraint for c is violated,

Frac executes the update operation consisting of the following steps:

1. Set γc ← γc + 1.

2. For each t ∈ T, independently, adjust one dual variable: if t ∈ T1
c , then set βc,t ←

βc,t + 1 and otherwise set αc,t ← αc,t + 1.

2.2. FRACTIONAL SOLUTION 19

3. If T1
c (T, choose active distance t∗ ← min(T \ T1

c) to be the smallest non-saturated

distance, and then set xc,t∗ ← xc,t∗ + 1/t∗. (Note that 0 ∈ T1
c , and thus t∗ > 0.)

4. For any facility f ∈ ⊎t∈T1
c

Fc,t, independently, perform augmentation of y f , setting

y f ←
(

1 +
1

cost(f)

)
· y f +

1
|F| · cost(f)

.

5. Update the set of saturated distances, setting T1
c ← {t ∈ T : xc,t ≥ 1}.

We now argue that if variable y f is augmented in Step 4, then cost(f) > 0 (i.e., Step 4 is well

defined). Let τ = cost(c, f). As y f is augmented, the distance τ is saturated (xc,τ = 1). If

cost(f) = 0, then y f would have been initialized to 1, and then y(Fc,τ) ≥ 1, in which case the

serving constraint for c would be already satisfied.

Side note about T. For the sake of coherence and more streamlined analysis, Frac increases

also connection variables xc,t to empty sets Fc,t, i.e., invests into distances to non-existing facili-

ties. Fixing this overspending would not lead to asymptotic improvement of the performance.

2.2.3 Structural properties

We focus on a single client c processed by Frac. We start with a property of connection

variables xc,t. The distances from T that are neither saturated nor active are called inactive. The

following claim follows by an immediate induction on update operations performed by Frac.

Lemma 2.1. At all times when a client c is considered, xc,t ∈ [0, 1] for any t ∈ T. In particular,

xc,t = 1 for any saturated distance t ∈ T1
c . Furthermore,

1. either all distances are saturated,

2. or there exists an active distance t∗ > 0, such that (i) all smaller distances are saturated, and (ii)

all larger distances are inactive and the corresponding variables xc,t are equal to zero.

Augmentation is performed on variables y f corresponding to facilities whose distance from c is saturated.

Lemma 2.2. On any input (G = (F, C, E, cost); A), Frac returns a feasible solution and runs in time

poly(|G|, |A|, maxe∈E cost(e), max f∈F cost(f)).

Proof. Fix any client c ∈ A. By the definition of Frac, it takes t update operations to increase

value xc,t from 0 to 1. Hence, after ∑t∈T t < 2 ·maxe∈E cost(e) update operations, all connection

variables are equal to 1. From that point on, all variables y f for f ∈ ⊎t∈T Fc,t are augmented

20 CHAPTER 2. NON-METRIC FACILITY LOCATION

in each update operation. Each variable y f can be augmented at most |F| · cost(f) times till

it reaches or exceeds 1. That is, after at most 2 ·maxe∈E cost(e) + |F| ·max f∈F cost(f) update

operations, the serving constraint is satisfied, i.e., the generated solution is feasible.

The following lemma shows the crucial property of Frac. Namely for any client c, there

exist a “good” distance τ, such that the collection of clusters Fc,t at distance t ≤ τ is together

fractionally half-open and that Frac invested Ω(τ) into connecting client c. For any client c and

distance t ∈ T, we define a set Sc,t to be a collection of clusters alluded to in the introduction.

Sc,t =
⊎

t′∈T : t′≤t

Fc,t′

Lemma 2.3. Once Frac finishes serving client c, there exists a distance τ ∈ T, such that y(Sc,τ) ≥ 1/2

and ∑t∈T t · xc,t ≥ τ/2.

Proof. We consider the state of variables once Frac finishes serving client c. Let t∗ > 0 be the

largest distance from T for which xc,t∗ > 0. As the serving constraint for client c is satisfied, we

have

1 ≤ ∑
t∈T

min {xc,t, y(Fc,t)} = min {xc,t∗ , y(Fc,t∗)}+ ∑
t∈T : t<t∗

min {xc,t, y(Fc,t)} . (2.2)

We pick τ depending on the value of the last term of (2.2).

If min{xc,t∗ , y(Fc,t∗)} ≥ 1/2, we set τ = t∗. Then, y(Sc,τ) ≥ y(Fc,τ) ≥ min{xc,τ, y(Fc,τ)}

≥ 1/2, and the first condition of the lemma follows. Furthermore, ∑t∈T t · xc,t ≥ τ · xc,τ ≥ τ/2.

Otherwise, min {xc,t∗ , y(Fc,t∗)} < 1/2, and then, by (2.2), ∑t∈T : t<t∗ min{xc,t, y(Fc,t)} ≥ 1/2.

In such case, we choose τ as the largest distance from T smaller than t∗. Then

y(Sc,τ) = ∑
t∈T : t≤τ

y(Fc,t) ≥ ∑
t∈T : t≤τ

min{xc,t, y(Fc,t)} ≥ 1/2,

i.e., the first condition of the lemma holds. By Lemma 2.1, either t∗ is active at the end of

processing c or all distances become saturated and t∗ is the largest distance from T. In either

case, xc,t = 1 for any distance t < t∗, and thus in particular xc,τ = 1. Hence, the second part of

the lemma holds as ∑t∈T t · xc,t ≥ τ · xc,τ = τ.

2.2.4 Dual solution is almost feasible

Using primal-dual analysis, we may show that the generated dual solution violates each

constraint at most by a factor of O(log |F|).

Lemma 2.4. For any facility f , Frac augments y f at most O(log |F|) · cost(f) times.

2.2. FRACTIONAL SOLUTION 21

Proof. First, we observe that variable y f can be augmented only if prior to augmentation it

is smaller than 1. To show that, observe that the augmentation of y f occurs only when Frac

processes an active client c ∈ set(f). Let τ = cost(f , c), i.e., f ∈ Fc,τ. As Frac augments y f ,

the distance τ must be saturated, i.e., xc,τ = 1. On the other hand, the serving constraint (2.1)

is not satisfied when y f is augmented, and thus min{xc,τ, y(Fc,τ)} < 1 which implies that y f

must be strictly smaller than 1.

In particular, if cost(f) = 0, then y f is set to 1 immediately at the beginning, and hence no

augmentation of y f is ever performed, and the lemma follows trivially. As all non-zero costs

are at least 1, below we assume cost(f) ≥ 1.

During the first cost(f) augmentations, the value of y f increases from 0 to at least 1/|F|

(due to additive increases). Next, during the subsequent dlog1+1/cost(f) |F|e augmentations,

the value of y f reaches at least 1 (due to multiplicative increases), and hence it will not be

augmented further. In total, the number of augmentations is upper-bounded by cost(f) +

dlog1+1/cost(f) |F|e = O(log |F|) · cost(f). In the last relation, we used cost(f) ≥ 1.

Lemma 2.5. Frac violates each dual constraint at most by a factor of O(log |F|).

Proof. We show the claim for all types of constraints in the dual program.

1. Each dual constraint γc ≤ αc,t + βc,t always holds with equality as together with γc, for

each t ∈ T, Frac increments either αc,t or βc,t.

2. Consider a constraint αc,t ≤ t. Initially αc,t = 0 when client c appears, and it is incremented

in an update operation only if distance t is not saturated. Distances are processed from

the smallest to the largest, and it takes exactly t′ update operations for a distance t′ ∈ T to

become saturated. Therefore, αc,t can be incremented at most ∑t′∈T:t′≤t t′ times. If t = 0,

then αc,t = 0 trivially. Otherwise, we use the fact that T \ {0} contains only powers of 2,

and hence αc,t ≤ ∑t′∈T:t′≤t t′ < 2 · t.

3. Finally, fix any facility f ∗ ∈ F and consider the constraint ∑c∈set(f ∗)∩ Ak
βc, cost(f ∗,c) ≤

cost(f ∗). We want to show that this constraint is violated at most by a factor of O(log |F|),

i.e., that

∑
c∈set(f ∗)∩ Ak

βc, cost(f ∗,c) ≤ O(log |F|) · cost(f ∗). (2.3)

The left-hand side of (2.3) is initially 0 and it is incremented only when Frac processes

some active client c∗ ∈ set(f ∗). In a single update operation, Frac may increment

multiple β variables, but only one of them, namely βc∗, cost(f ∗,c∗), contributes to the growth

22 CHAPTER 2. NON-METRIC FACILITY LOCATION

of the left-hand side of (2.3). If variable βc∗, cost(f ∗,c∗) is incremented, it means that the

distance τ = cost(f ∗, c∗) is already saturated, i.e., τ ∈ T1
c∗ . Thus, in the same update

operation, Frac augments all variables y f for f ∈ ⊎t∈T1
c∗

Fc∗,t. This set of facilities includes

cluster Fc∗,τ and thus also facility f ∗. By Lemma 2.4, the augmentation of y f ∗ may happen

at most O(log |F|) · cost(f ∗) times, which implies our claim.

2.2.5 Competitive ratio of FRAC

Finally, we show that in each update operation the growth of the primal cost is at most

constant times the growth of the dual cost. This will imply the competitive ratio of Frac.

Lemma 2.6. For any step k, the value of the solution to Pk computed by Frac is at most 3 times the

value of its solution to Dk.

Proof. As the values of both solutions are initially zero, it suffices to analyze the growth of the

primal and dual objectives for a single update operation. The value of the dual solution grows

by 1 as γc is incremented only for the requested client c. Thus, it is sufficient to show that the

primal solution increases at most by 3.

By y f , xc,t and T1
c , we understand the values of these variables before an update operation.

Let F1 =
⊎

t∈T1
c

Fc,t. As the serving constraint for client c is not satisfied at that point,

1 > ∑
t∈T

min {xc,t, y(Fc,t)} ≥ ∑
t∈T1

c

min {xc,t, y(Fc,t)} ≥ ∑
t∈T1

c

y(Fc,t) = y(F1). (2.4)

In the last inequality we used that (by Lemma 2.1), T1
c = {t ∈ T : xc,t = 1}. The last equality

follows as sets Fc,t are disjoint for different t.

Within a single update operation, let ∆xc,t and ∆y f be the increases of variables xc,t and y f ,

respectively. By Lemma 2.1, Frac increases one connection variable xc,t∗ for an active distance t∗

(and no connection variable if there is no active distance) and performs augmentations of y f

for all f ∈ F1. The increase of the primal value is then

∆P = ∑
t∈T

t · ∆xc,t + ∑
f∈F1

cost(f) · ∆y f ≤ 1 + ∑
f∈F1

cost(f) ·
(

y f

cost(f)
+

1
|F| · cost(f)

)
= 1 + y(F1) +

|F1|
|F| < 3,

where the last inequality follows by (2.4).

Lemma 2.7. For any input (G = (F, C, E, cost); A), it holds that Frac(G; A) ≤ O(log |F|) ·

Opt(G; A).

2.3. DETERMINISTIC ROUNDING 23

Proof. Let k be the total number of active clients in A, and let val(Pk) and val(Dk) be the values

of the final primal and dual solutions generated by Frac. Then,

Frac(G; A) = val(Pk) ≤ 3 · val(Dk) (by Lemma 2.6)

≤ O(log |F|) ·Opt(G; A) (by Lemma 2.5 and weak duality).

2.3 Deterministic rounding

Now we define our deterministic algorithm Int, which rounds the fractional solution

computed by Frac. For a client c ∈ A, Int observes the actions of Frac while processing c

and on this basis makes its own decisions. First, Int processes augmentations of variables y f

performed by Frac, and purchases some facilities. Once Frac finishes handling client c, Int

connects c to the closest open facility. (We show below that such facility exists.)

2.3.1 Purchasing facilities: properties of INTFAC

Purchasing facilities by Int is based solely on graph G and on updates of variables y f

produced by Frac. In particular, it neglects whether a given client is active or not. We use

integral variables ŷ f ∈ {0, 1} to denote whether Int opened facility f . Furthermore, for any

set F′ we use ŷ(F′) as a shorthand for ∑ f∈F′ ŷ f .

The following lemma is an adaptation of the deterministic rounding routine for the set

cover problem by Alon et al. [AAA+
09] and its proof is postponed to Section 2.3.3.

Lemma 2.8. Fix any input (G = (F, C, E, cost); A). Initially, ŷ f = y f = 0 for any f ∈ F. There

exists a deterministic polynomial-time online algorithm IntFac that transforms increments of fractional

variables y f to increments of integral variables ŷ f ∈ {0, 1}, so that

• condition y(Sc,t) ≥ 1/2 implies ŷ(Sc,t) ≥ 1 for any client c ∈ C (active or inactive) and any

t ∈ T,

• ∑ f∈F cost(f) · ŷ f ≤ O(log |C× T|) ·∑ f∈F cost(f) · y f + 2 ·max f∈F cost(f).

2.3.2 Connecting clients

Once Int purchases facilities using deterministic routine IntFac (cf. Lemma 2.8), it connects

client c to the closest open facility. Now we show that such a facility indeed exists and we

bound the competitive ratio of Int.

24 CHAPTER 2. NON-METRIC FACILITY LOCATION

Lemma 2.9. On any input (G; A), the solution generated by Int is feasible and the total cost of

connecting clients by Int is at most 2 · Frac(G; A).

Proof. Fix any client c ∈ A. By Lemma 2.3, there exists a distance τ ∈ T such that y(Sc,τ) ≥ 1/2

and ∑t∈T t · xc,t ≥ τ/2. By Lemma 2.8, once Int purchases facilities, it holds that ŷ(Sc,τ) ≥ 1. It

means that at least one facility is opened in set Sc,τ, i.e., at distance at most τ from c.

Therefore, Int is feasible and by connecting client c to the closest open facility, it ensures

that the connection cost is at most τ ≤ 2 · ∑t∈T t · xc,t. The proof is concluded by observing

that ∑t∈T t · xc,t is the connection cost of Frac that can be attributed solely to the connection of

client c.

Lemma 2.10. For any input (G = (F, C, E, cost); A), it holds that Int(G, A) ≤ q · log |F| · (log |C|+

log log ∆G) ·Opt(G, A) + 2 ·max f∈F cost(f), where q is a universal constant not depending on G

or A. Furthermore, Int runs in time polynomial in |G|, |A|, maxe∈E cost(e), and max f∈F cost(f).

Proof. Let ρ = max f∈F cost(f). Then,

Int(G; A) ≤ ∑
f∈F

cost(f) · ŷ f + 2 · Frac(G; A) (by Lemma 2.9)

≤ O(log |C× T|) · Frac(G; A) + 2 · ρ (by Lemma 2.8)

= O((log |C|+ log |T|) · log |F|) ·Opt(G; A) + 2 · ρ (by Lemma 2.7).

The bound on the cost of Int is concluded by using |T| ≤ 2 + log ∆G.

By Lemma 2.2, Frac running time is poly(|G|, |A|, maxe∈E cost(e), max f∈F cost(f)). On top

of that, Int adds its own computations (in particular the rounding scheme of IntFac), whose

runtime is polynomial in |G| and |A|. This implies the second part of the lemma (the running

time of Int).

2.3.3 Purchasing facilities: algorithm INTFAC

We start with a technical claim and later we define our rounding procedure IntFac.

Lemma 2.11. Fix any q ∈ [0, 1/2] and any r ≥ 0. Let X be a binary variable being 0 with probability

p > 0. Then, E[exp(q · X)] ≤ exp(−(3/2) · q · ln p).

2.3. DETERMINISTIC ROUNDING 25

Proof. Using the definition of X, we have

E[exp(q · X)] = p · e0 + (1− p) · eq = exp(ln p) + (1− exp(ln p)) · eq

≤ 1 + ln p− eq · ln p = 1− ln p · (eq − 1)

≤ 1− (3/2) · q · ln p

≤ exp(−(3/2) · q · ln p).

In the first inequality, we used that ex · 1 + (1− ex) · z ≤ (1 + x) · 1 + (−x) · z for any x ≤ 0 and

z ≥ 1 and in the second one, we used that ex − 1 ≤ 3x/2 for any x ∈ [0, 1/2].

Algorithm Description. As we mentioned earlier, our routine IntFac for rounding facilities

is an adaptation of the deterministic rounding procedure for the set cover problem by Alon et

al. [AAA+
09]. On the basis of the facility-client graph G, we define the set C× T of elements.

Intuitively, our solution Frac “covers” an element (c, t) ∈ C × T by fractionally opening

facilities from Sc,t. The routine IntFac deterministically rounds these covering choices.

Let ` = |C × T|, ρ = max f∈F cost(F) and b = 6 · ln ` = O(log |C × T|). We consider the

potential function Φ = Φ1 + Φ2, where

Φ1 = ∑
(c,t) : ŷ(Sc,t)=0

` 4·y(Sc,t) and Φ2 = ` · exp

(
∑
f∈F

cost(f)
2ρ

·
(
ŷ f − b · y f

))
.

Assume that Frac augmented variable y f . Then our algorithm IntFac chooses whether

to set ŷ f to 1 or not (purchase f or not), so that the potential Φ does not increase. (We again

emphasize that this choice neglects the current set of active clients.)

Correctness and Performance. In the lemma below, we show that IntFac is well defined,

i.e., it is possible to fix variable ŷ f , so that the potential Φ does not increase. This implies

that both Φ1 and Φ2 remain upper-bounded, which can be in turn used to show properties of

Lemma 2.8.

Lemma 2.12. Assume y f ∗ is increased by δ. If ŷ f ∗ = 1, then Φ does not increase. Otherwise, there is

a choice to either set ŷ f ∗ to 1 or not, so that Φ does not increase.

Proof. By y f and ŷ f , we mean the values of these variables before an update operation of Frac.

First, we assume ŷ f ∗ = 1. Increasing variable y f ∗ affects values of y(Sc,t) for f ∗ ∈ Sc,t: all

such y(Sc,t) increase by δ. However, for any element (c, t), such that f ∗ ∈ Sc,t, it holds that

ŷ(Sc,t) ≥ ŷ f ∗ = 1, i.e., element (c, t) is not counted in the sum occurring in Φ1. Thus, increasing

26 CHAPTER 2. NON-METRIC FACILITY LOCATION

variable y f ∗ does not affect Φ1. Furthermore, increasing y f ∗ and keeping ŷ f ∗ unchanged can

only decrease Φ2. Thus, Φ = Φ1 + Φ2 does not increase when ŷ f ∗ = 1.

Second, we consider the case ŷ f ∗ = 0. To show that either setting ŷ f ∗ to 1 or leaving it at 0

does not increase the potential, we use the probabilistic method and show that if we pick such

action randomly (setting ŷ f ∗ = 1 with probability 1− `−4·δ), then, in expectation, neither Φ1

nor Φ2 increases.

• As observed above, only elements (c, t) for which Sc,t contain f ∗ are affected by the

increase of y f ∗ and possible change of ŷ f ∗ . Let Q = {(c, t) : f ∗ ∈ Sc,t and ŷ(Sc,t) = 0} be

the set of such elements contributing to Φ1.

Fix any element (c, t) ∈ Q. Its initial contribution towards Φ1 is ` 4·y(Sc,t) and when y f ∗

increases, the contribution grows to ` 4·(y(Sc,t)+δ). However, with probability 1− `−4·δ,

variable ŷ f ∗ is set to 1, thus ŷ(Sc,t) grows from 0 to 1, and in effect element (c, t) stops

contributing to Φ1. Hence, the expected final contribution of element (c, t) towards Φ1

is ` 4·(y(Sc,t)+δ) · `−4·δ + 0 · (1− `−4·δ) = ` 4·y(Sc,t), i.e., is equal to its initial contribution.

Therefore, in expectation, the value of Φ1 is unchanged.

• It remains to bound the expected value of Φ2. Let Ŷ be the random variable equal to

the value of ŷ f ∗ after the random choice (i.e., Ŷ = 1 with probability 1− `−4·δ) and Φ′2

denote the value of Φ2 after increasing y f ∗ and after the random choice. Using y f ∗ = 0,

we obtain

Φ′2 = ` · exp

(
∑
f∈F

cost(f)
2ρ

·
(
ŷ f − b · y f

)
+

cost(f ∗)
2ρ

· Ŷ− b · cost(f ∗)
2ρ

· δ
)

= Φ2 · exp
(
cost(f ∗)

2ρ
· Ŷ
)
· exp

(
−b · cost(f ∗)

2ρ
· δ
)

.

To estimate E[Φ′2], we upper-bound the expected value of exp(Ŷ · cost(f ∗)/(2ρ)), using

Lemma 2.11 with q = cost(f ∗)/(2ρ) ≤ 1/2 and p = `−4·δ, obtaining that

E
[

exp
(
cost(f ∗)

2ρ
· Ŷ
)]
≤ exp

(
− (3/2) · cost(f ∗)

2ρ
· ln p

)
= exp

(
6 · ln ` · cost(f ∗)

2ρ
· δ
)

.

Therefore, E[Φ′2] ≤ Φ2 and the lemma follows.

We conclude this section with proof of Lemma 2.8 (restated below).

Lemma 2.8. Fix any input (G = (F, C, E, cost); A). Initially, ŷ f = y f = 0 for any f ∈ F. There

exists a deterministic polynomial-time online algorithm IntFac that transforms increments of fractional

variables y f to increments of integral variables ŷ f ∈ {0, 1}, so that

2.4. HANDLING LARGE ASPECT RATIOS 27

• condition y(Sc,t) ≥ 1/2 implies ŷ(Sc,t) ≥ 1 for any client c ∈ C (active or inactive) and any

t ∈ T,

• ∑ f∈F cost(f) · ŷ f ≤ O(log |C× T|) ·∑ f∈F cost(f) · y f + 2 ·max f∈F cost(f).

Proof. Initially, all variables y f and ŷ f are zero, and thus Φ = ∑(c,t)∈C×T `0 + ` · exp(0) = 2 · `.

By Lemma 2.12, the potential never increases. Since Φ2 is non-negative, any summand of Φ1 is

always at most 2 · ` ≤ `2. Therefore, 4 · y(Sc,t) ≥ 2 always implies ŷ(Sc,t) > 0, i.e., the first part

of the lemma follows.

To show the second part, we again use that Φ = Φ1 + Φ2 ≤ 2 · ` at any time. As Φ1 is

non-negative, Φ2 ≤ 2 · `. Substituting the definition of Φ2, dividing by `, and taking natural

logarithm of both sides yields

1
2ρ
· ∑

f∈F

(
ŷ f · cost(f)− b · y f · cost(f)

)
≤ ln(2) < 1.

Therefore, ∑ f∈F ŷ f · cost(f) ≤ 2ρ + b ·∑ f∈F y f · cost(f).

2.4 Handling large aspect ratios

The guarantee of Lemma 2.10 has two deficiencies: (i) the bound on the competitive ratio

of Int depends on the aspect ratio of G and on the cost of the most expensive facility, (ii) the

running time of Int depends on the maximal cost in graph G (which can be exponentially large

in the input description). We show how to use cost doubling and edge pruning to handle these

issues, creating our final deterministic solution Det and proving the main theorem (restated

below).

Theorem 2.1. There exists a deterministic polynomial-time O(log |F| · (log |C|+ log log |F|))-competi-

tive algorithm for the online non-metric facility location problem on set F of facilities and set C of

clients.

Proof. Fix facility-client graph G = (F, C, E, cost) for the non-metric facility location problem.

Recall that we assumed that all non-zero costs and distances in G are powers of 2 and are at

least 1. Let R = log |F| · (log |C|+ log log(|F| · |C|)).

We now construct a deterministic algorithm Det which is O(R)-competitive on an in-

put (G; A). Let q be the constant from Lemma 2.10. Det operates in phases, numbered from 0.

In phase j, it executes the following operations.

28 CHAPTER 2. NON-METRIC FACILITY LOCATION

1. Det pre-purchases all facilities and edges of G whose cost is smaller than 2j/(|F| · |C|).

2. Det creates an auxiliary facility-client graph G̃j applying the following modifications

to G.

• First, Det creates graph Gj containing only edges and facilities from G whose

individual cost is at most 2j. It also removes connections to facilities that have been

removed in this process.

• Second, the costs of all facilities and edges that have been pre-purchased by Det

are set to zero in Gj. In a result, Gj is a sub-graph of G with adjusted distances and

costs of facilities, has the same set of clients, its set of facilities is a subset of F, and

∆Gj ≤ |F| · |C|.

• Third, G̃j is the modified version of Gj, where all costs have been scaled down, so

that the smallest positive cost is equal to 1. We denote the scaling factor by hj ≤ 1.

3. Det simulates algorithm Int on input (G̃j; A). That is, for a client c ∈ A, Det verifies

whether the overall cost of Int (including serving c) remains at most hj · (q · R + 2) · 2j.

In such case, Det outputs the choices of Int for client c as its own. We emphasize that

Int is run also on clients that have been already served in the previous phases; in effect,

Det may purchase the same facilities or connections multiple times.

4. Eventually, either the sequence A of active clients ends and the total cost of Int on (G̃j; A)

is at most hj · (q · R + 2) · 2j (in which case Det terminates as well) or the purchases made

by Int, while handling a client c ∈ A, caused its cost to exceed hj · (q · R + 2) · 2j. (This

includes the special case where c is disconnected from all facilities in G̃j, because all

edges incident to c in G were either more expensive than 2j or were leading to facilities

more expensive than 2j.) In the case of exceeded cost, Det disregards the decisions of Int

for client c, terminates Int, and starts phase j + 1, processing also all clients that were

already served in phase j.

We now analyze the performance of Det. Let k = dlog(Opt(G; A))e ≥ 0. We show that Det

terminates latest in phase k. Assume that Det has not finished within phases 0, 1, . . . , k− 1. In

phase k, Det creates auxiliary graphs Gk and G̃k, and runs Int on graph G̃k. Graph Gk contains

all edges of G of cost at most 2k; their cost in Gk is the same or reset to zero. As Opt(G; A) ≤ 2k,

Opt(G; A) purchases only edges that are in Gk, and thus Opt(G; A) is also a feasible solution

to instance (Gk; A). Thus, Opt(Gk; A) ≤ Opt(G; A) ≤ 2k. As G̃k is the scaled-down copy of Gk,

Opt(G̃k; A) = hk ·Opt(Gk; A) ≤ hk · 2k.

2.5. REMARKS AND APPLICATIONS 29

Let F̃k be the set of facilities of graph G̃k and ˜costk(f) is the cost of opening facility f in

graph G̃k. Clearly, |F̃k| ≤ |F| and ˜costk(f) ≤ hk · cost(f) for any f ∈ F. By our construction,

∆G̃k
= ∆Gk ≤ |F| · |C|. Hence, Lemma 2.10 implies that

Int(G̃k; A) ≤ q · log |Fk| ·
(

log |C|+ log log ∆G̃k

)
·Opt(G̃k; A) + 2 ·max

f∈F̃k

˜costk(f)

≤ hk · q · log |F| · (log |C|+ log log(|F| · |C|)) · 2k + 2 · hk · 2k

= hk · (q · R + 2) · 2k.

Therefore, Int is not terminated prematurely within phase k because of high cost and it finishes

the entire sequence A. This implies the feasibility of Int: it serves all clients latest in phase k.

To bound the total cost of Det, recall that at the beginning of phase j, Det purchases at

most |F| · |C| edges and at most |F| facilities, each of cost at most 2j/(|F| · |C|). The associated

overall cost is at most 2 · 2j. The cost of the subsequent execution of algorithm Int on G̃j is, by

our termination rule, at most hj · (q · R + 2) · 2j, and thus the cost incurred by repeating Int’s

actions on G is at most (q · R+ 2) · 2j. The overall cost is then Det(G; A) ≤ ∑k
j=0(q · R+ 4) · 2j =

O(R) · 2k = O(R) ·Opt(G; A) = O(log |F| · (log |C|+ log log |F|)) ·Opt(G; A).

For the running time of Det, we note that in phase j, Int is run on a graph G̃j whose smallest

cost is 1, and hence the largest cost is at most ∆G̃j
= ∆Gj ≤ |F| · |C|. Thus, by Lemma 2.10, the

running time of Int in a single phase is polynomial in |G| and |A|, and the number of phases

is logarithmic in the maximum cost occurring in G, and thus also polynomial in |G|.

2.5 Remarks and applications

2.5.1 Previous (unpublished) algorithm for non-metric facility location

As already mentioned in the introduction, one can obtain an algorithm with a slightly

worse competitive ratio by using an online reduction to the set cover problem by Kolen and

Tamir [KT90], which we present in this section.

We will show their reduction in three steps. First, for a given non-metric facility location

input INFL, we construct an instance of set cover problem ISC. Second, we show how to

translate an online set cover algorithm into an online algorithm for non-metric facility location.

To this end, we show what facilities and connections are purchased as the algorithm buys more

sets. The cost of the resulting solution to INFL will be bounded by the cost of solution to ISC.

Third, from any solution to INFL, we create a solution to ISC of comparable cost. We use this

to relate the costs of optimal solutions to both problems.

30 CHAPTER 2. NON-METRIC FACILITY LOCATION

Inputs. Fix INFL = ((F, C, E, cost); A). Let T = {cost(f , c) : f ∈ F, c ∈ C} be the set of all

distances appearing in INFL (recall that we assumed that all distances are either 0 or a power

of two). We define ISC = (S, U, cost; V) to be an input to the set cover problem, where V ⊆ U

is the sequence of elements to be covered. The universe U contains two types of elements: For

each client c ∈ C, we include a real element ec in U and for each client c ∈ C and distance t ∈ T

we have a virtual element ec,t in U. Similarly, the set family S contains two types of sets. For

each facility f ∈ F we have a real set s f in S with cost(s f) = cost(f) and for each client c ∈ C

and distance t ∈ T we have a virtual set sc,t in U with cost(sc,t) = t.

The idea of this constructions is to use real sets and elements for satisfying the coverage

requirement of facility location. The virtual elements and sets will ensure that the connection

cost is properly paid by the set cover solution.

An element ec for client c ∈ C is in set s f if facility f can cover c. For client c ∈ C and

distance t ∈ T, an element ec,t can be covered by set sc,t and by all sets s f for facilities f

that are closer than t from c, i.e., if cost(f , c) < t. When client c appears in the input

sequence INFL (i.e., c ∈ A), we add to the set V of active elements ec and ec,t for all t ∈ T. That

is, V = {ec : c ∈ A}] {ec,t : c ∈ A, t ∈ T}.

Algorithm. Suppose we have a deterministic online algorithm AlgSC for the set cover problem.

We will define a deterministic online algorithm AlgNFL for the non-metric facility location

problem, such that

AlgNFL(INFL) ≤ 2 ·AlgSC(ISC). (2.5)

When AlgSC buys set s f corresponding to a facility f ∈ F, AlgNFL simply purchases

facility f . Algorithm AlgNFL connects an active client c ∈ A to the closest open facility (such

facility exists because ec has to be covered by a real set, which corresponds to some facility).

It remains to bound the cost. The opening cost of AlgNFL is clearly equal to the cost of real

sets purchased by AlgSC. To bound the connection cost, observe that if AlgNFL connects client c

to facility f at distance t = cost(f , c), then in the solution of AlgSC, all elements ec,t′ for t′ ≤ t

are covered by virtual sets sc,t′ . This incurs a cost of at most ∑t′∈T:t′≤t t′ < 2 · t = 2 · cost(f , c).

Summing over all clients and facilities yields (2.5).

Optima. To lower bound the cost of optimal solution to INFL, we define an offline algorithm

Off for the set cover problem. The algorithm Off buys all real sets that correspond to facilities

opened in Opt(INFL). When an active client c is connected to facility f with cost(f , c) = t,

2.5. REMARKS AND APPLICATIONS 31

all virtual sets sc,t′ for t′ ≤ t are purchased. The cost of purchased real sets equals the cost

of opened facilities, while the cost of all virtual sets is at most twice the connection cost of

Opt(INFL).

To show the feasibility of solution Off(ISC), fix c ∈ A be an active client. Let f be the

facility it is connected to in the solution Opt(ISC). Active element ec, as well as elements ec,t′

for t′ > dist(f , c) are covered by set s f . For the remaining distances t′ ≤ dist(f , c), clients ec,t′

are covered by the virtual sets sc,t′ . Therefore, the cost of optimal solution to ISC does not

exceed the cost of solution Off(ISC) and thus

2 ·Opt(INFL) ≥ Off(ISC) ≥ Opt(ISC). (2.6)

Wrapping up. In this section, we presented a reduction, which transforms an instance

of the non-metric facility location problem into an instance of the set cover problem with

|F|+ |C| · log ∆G sets and |C|+ |C| · log ∆G elements. By, (2.5) and (2.6), c-competitive algorithm

for this instance of the set-cover problem can be transformed into 4 · c-competitive algorithm

for the non-metric facility location problem.

Using this reduction together with doubling techniques described in Section 2.4 and the

deterministic algorithm for the online set cover problem by Alon et al. [AAA+
09] yields

a solution to the non-metric facility location problem whose competitive ratio is O((log |C|+

log |F|) · (log |C|+ log log |F|)).

2.5.2 Application to online node-weighted Steiner tree

Our result for the non-metric facility location problem has an immediate application for the

online node-weighted Steiner tree (NWST) problem, where the graph consists of ` nodes and

an online algorithm is given k terminals to be connected. Namely, the randomized solution

for the online NWST problem by Naor et al. [NPS11] is in fact a deterministic polynomial-

time “wrapper” around randomized routine solving the non-metric facility location problem.

To solve an instance of the NWST problem, their algorithm constructs a sub-instance of

non-metric facility location with O(`) facilities, O(`) potential clients, and O(k) active clients.

Such instance can be solved by the randomized algorithm of Alon et al. [AAA+
06] with the

competitive ratio of O(log k · log `). The wrapper adds another O(log k) factor in the ratio,

resulting in an O(log2 k · log `)-competitive algorithm.

Our deterministic algorithm, when applied to this setting would be O(log2 `)-competitive

on the constructed non-metric facility location sub-instance. Therefore, by replacing the

32 CHAPTER 2. NON-METRIC FACILITY LOCATION

randomized algorithm by Alon et al. [AAA+
06] with our deterministic one, we immediately

obtain the first online deterministic solution for online NWST.

Corollary 2.1. There exists a polynomial-time deterministic online algorithm for the node-weighted

Steiner tree problem, which is O(log k · log2 `)-competitive on graphs with ` nodes and k terminals.

We note that the currently best solution for the node-weighted Steiner tree is randomized

and achieves the ratio of O(log2 `) [HLP17, HLP14] and the best known lower bound for

deterministic algorithms is Ω(log ` · log k/(log log `+ log log k)) [NPS11, AAA+
09].

Chapter 3

Matching with delays

3.1 Introduction

In this chapter, we give a deterministic online algorithm for the problem of matching with

delays [EKW16, ACK17]. For an informal description, imagine that there are players who are

logging in real time into a gaming service, each wanting to compete with another human player.

The system pairs the players according to their known capabilities, such as playing strength,

and a decision with whom to match a given player can be delayed until a reasonable match is

found. That is, the website tries to simultaneously minimize two objectives: the waiting times

of players and their dissimilarity, i.e., each player would like to play with another one with

comparable capabilities. An algorithm running the website has to work online, without the

knowledge about future player arrivals and make its decision irrevocably: once two players are

paired, they remain paired forever.

3.1.1 Problem definition

More formally, in the problem of matching with delays there is a metric space M with

a distance function dist : M×M→ R, both known from the beginning to an online algorithm.

The online part of the input is a sequence of 2m requests {(pi, ti)}2m
i=1, where point pi ∈ M

corresponds to a player in our informal description above and ti is the time of its arrival

satisfying t1 ≤ t2 ≤ . . . ≤ t2m. The integer m is not known a priori to the online algorithm.

At any time τ, the online algorithm may decide to match any pair of requests (pi, ti) and

(pj, tj) that have already arrived (τ ≥ ti and τ ≥ tj) and have not been matched yet. The cost

incurred by such matching edge is dist(pi, pj) + (τ − ti) + (τ − tj), i.e., the sum of the connection

33

34 CHAPTER 3. MATCHING WITH DELAYS

cost and the waiting costs of these two requests. The goal is to eventually match all requests and

minimize the total cost.

3.1.2 Previous work

The problem of matching with delays was introduced by Emek et al. [EKW16], who

presented a randomized O(log2 n + log ∆)-competitive algorithm. There, n is the number

of points in the metric space M and ∆ is its aspect ratio (the ratio between the largest and

the smallest distance in M). The competitive ratio was subsequently improved by Azar et

al. [ACK17] to O(log n). They showed that the competitive ratio of any randomized algorithm

is at least Ω(
√

log n). The currently best lower bound of Ω(log n/ log log n) for randomized

solutions was given by Ashlagi et al. [AAC+
17].

Until then, the construction of a competitive deterministic algorithm for general metric

spaces remained an open problem. It was hypothesized that the competitive ratio achiev-

able by deterministic algorithms might be superpolynomial in n (cf. Sect. 5 of [ACK17]).

Deterministic algorithms were known only for simple spaces: Azar et al. [ACK17] gave an

O(height)-competitive algorithm for trees and Emek et al. [ESW17] constructed a 3-competitive

deterministic solution for two-point metrics (the latter competitive ratio is best possible).

3.1.3 Our contribution

In this chapter, we give the historically first deterministic algorithm for an arbitrary metric

space, whose competitive ratio is O(mlog2 5.5) = O(m2.46), where 2m is the number of requests.

While previous solutions to the problem of matching with delays [EKW16, ACK17] required

M to be finite and known a priori (to approximate it first by a random HST tree [FRT04]

or a random HST tree with reduced height [BBMN15]), our solution works even when M is

revealed in online manner. That is, we require only that, together with any request r, the online

algorithm learns the distances from r to all previous, not yet matched requests.

We note that m is uncomparable with n (the number of different points in the metric

space M) and their relation depends on the application. For instance, in the traditional player

ranking systems, such as Elo rating [Elo78] used for chess, M is just a finite set of integers

(ratings) and typically there are many players with the same rating (multiple requests appear

at the same point of M). For such setting, our algorithm is admittedly outperformed by the

deterministic algorithm for trees by Azar et al. [ACK17] (which is O(n)-competitive for such

metric). On the other hand, there is an emerging trend for representing players in online games

3.1. INTRODUCTION 35

as multi-dimensional vectors [DCT+
12, ASvZ13, CSEN17]: some real-time strategy games and

first-person shooters started to characterize players by their rank, reflex, planning, offensive

and defensive skills, number of actions per minute, network latency, etc. For such cases, M is a

subset of Rk with `1 metric, and thus m� n.

Our online algorithm Alg uses a simple, local, semi-greedy scheme to find a suitable

matching pair. In the analysis, we fix a final perfect matching of Opt and observe what happens

when we gradually add matching edges that Alg creates during its execution. That is, we trace

the evolution of alternating paths and cycles in time. To bound the cost of Alg, we charge the

cost of an edge that Alg is adding against the cost of already existing matching edges from

the same alternating path. Interestingly, our charging argument on alternating cycles bears

some resemblance to the analyses of algorithms for the problems that are not directly related to

matching with delays: online metric (bipartite) matching on line metrics [ABN+
14] and offline

greedy matching [RT81].

3.1.4 Related work

Originally, matching problems have been studied in variants where delaying decisions was

not permitted. The setting most similar to the problem of matching with delays is called online

metric bipartite matching. It involves m offline points given to an algorithm at the beginning and

m requests presented in online manner that need to be matched (immediately after their arrival)

to offline points. Both the points and the requests lie in a common metric space and the goal

is to minimize the weight of a perfect matching created by the algorithm. For general metric

spaces, the best randomized solution is O(log m)-competitive [BBGN14, GL12, MNP06], and

the deterministic algorithms achieve the optimal competitive ratio of 2m− 1 [KP93, KMV94].

Interestingly, even for line metrics [ABN+
14, FHK05, KN03], the best known deterministic

algorithm attains a competitive ratio that is polynomial in m [ABN+
14].

In comparison, in the problem of matching with delays considered in this chapter, all 2m

requests appear in online manner (the requests need not be matched immediately after arrival),

m is not known to an algorithm, and we allow to match any pair of them. That said, there is

also a bipartite variant of the problem of matching with delays, in which all requests appear

online, but m of them are negative and m are positive. An algorithm may then only match

pairs of requests of different polarities [AAC+
17, ACK17].

The problem of matching with delays can be cast as augmenting min-cost perfect matching

with a time axis, allowing the algorithm to delay its decisions, but penalizing the delays. There

36 CHAPTER 3. MATCHING WITH DELAYS

are many other problems that use this paradigm: the ski-rental problem and its continuous

counterpart, the spin-block problem [KMMO94], various problems in aggregating messages in

computer networks [AB05,BBC+
13,DGS01,KKR03,KNR02,PSW10], and, more recently, service

with delay [AGGP17,BKS18], set cover with delay [ACKT20], and network design (Steiner trees

and facility location) with delay [AT20].

Finally, there is a vast amount of work devoted to other online matching variants, where

offline points and online requests are connected by graph edges and the goal is to maximize the

weight or the cardinality of the produced matching. These types of matching problems have

been studied since the seminal work of Karp et al. [KVV90] and are motivated by applications

to online auctions, see, e.g., a survey by Mehta [Meh13].

3.2 Algorithm

We will identify requests with the points at which they arrive. To this end, we assume that

all requested points are different, but we allow distances between different metric points to be

zero. For any request p, we denote the time of its arrival by atime(p).

Our algorithm is parameterized with real numbers α > 0 and β > 1, whose exact values

will be optimized later. For any request p, we define its waiting time at time τ ≥ atime(p) as

waitτ(p) = τ − atime(p)

and its budget at time τ as

budgetτ(p) = α · waitτ(p).

Our online algorithm Alg matches two requests p and q at time τ as soon as the following

two conditions are satisfied:

budget sufficiency: budgetτ(p) + budgetτ(q) ≥ dist(p, q),

budget balance: budgetτ(p) ≤ β · budgetτ(q) and budgetτ(q) ≤ β · budgetτ(p).

Note that the budget balance condition is equivalent to relations on waiting times, i.e.,

waitτ(p) ≤ β · waitτ(q) and waitτ(q) ≤ β · waitτ(p).

If the conditions above are met simultaneously for many point pairs, we break ties arbitrarily,

and process them in any order. Note that at the time when p and q become matched, the sum

of their budgets may exceed dist(p, q). For example, this occurs when q appears at time strictly

3.3. ANALYSIS 37

larger than atime(p) + dist(p, q): they are then matched by Alg as soon as the budget balance

condition becomes true.

The observation below follows immediately by the definition of Alg.

Observation 3.1. Fix time τ and two requests p and q, such that atime(p) ≤ τ and atime(q) ≤ τ.

Assume that neither p nor q has been matched by Alg strictly before time τ. Then exactly one of the

following conditions holds:

• α · (waitτ(p) + waitτ(q)) ≤ dist(p, q),

• α · (waitτ(p) + waitτ(q)) > dist(p, q) and waitτ(p) ≥ β · waitτ(q),

• α · (waitτ(p) + waitτ(q)) > dist(p, q) and waitτ(q) ≥ β · waitτ(p).

3.3 Analysis

To analyze the performance of Alg, we look at matchings generated by Alg and by

an optimal offline algorithm Opt. If points p and q were matched at time τ by Alg, then we

say that Alg creates a (matching) edge e = (p, q). Its cost is

Alg(e) = Alg(p, q) = dist(p, q) + waitτ(p) + waitτ(q).

We call e an Alg-edge. The cost of an edge in the solution of Opt (an Opt-edge) is defined

analogously. In an optimal solution, however, the matching time is always equal to the arrival

time of the later of two matched requests.

We consider a dynamically changing graph consisting of requested points, Opt-edges and

Alg-edges. For the analysis, we assume that it changes in the following way: all requested

points and all Opt-edges are present in the graph from the beginning, but the Alg-edges are

added to the graph in m steps, in the order they are created by Alg.

At all times, the matching edges present in the graph form alternating paths or cycles (i.e.,

paths or cycles whose edges are interleaved Alg-edges and Opt-edges). Furthermore, any

node-maximal alternating path starts and ends with Opt-edges. Assume now that a matching

edge e created by Alg is added to the graph. It may either connect the ends of two different

alternating paths, thus creating a single longer alternating path or connect the ends of one

alternating path, generating an alternating cycle. In the former case, we call edge e non-final,

in the latter case — final. Note that at the end of the Alg execution, when m Alg-edges are

added, the graph contains only alternating cycles.

38 CHAPTER 3. MATCHING WITH DELAYS

We extend the notion of cost to alternating path and cycles. For any cycle C, cost(C) is

simply the sum of costs of its edges: the cost of an Opt-edge on such cycle is the cost paid by

Opt and the cost of an Alg-edge is that of Alg. We also define Opt(C), Alg(C) and AlgNF(C)

as the costs of Opt-edges, Alg-edges and non-final Alg-edges on cycle C, respectively. Clearly,

Alg(C) + Opt(C) = cost(C). We define the same notions for alternating paths; as a path P

does not contain final Alg-edges, AlgNF(P) = Alg(P).

An alternating path is called κ-step maximal alternating path if it exists in the graph after

Alg matched κ pairs and it cannot be extended, i.e., it ends with two requests that are not yet

matched by the first κ Alg-edges.

3.3.1 Tree construction

To facilitate the analysis, along with the graph, we create a dynamically changing forest F

of binary trees, where each leaf of F corresponds to an Opt-edge and each internal (non-leaf)

node of F to a non-final Alg-edge (and vice versa). After Alg matched κ pairs, each subtree

of F corresponds to a κ-step maximal alternating path or to an alternating cycle. More precisely,

at the beginning, F consists of m single nodes representing Opt-edges. Afterwards, whenever

an Alg-edge is created, we perform the following operation on F.

• When a non-final Alg-edge e = (p, q) is added to the graph, we look at the two alternating

paths P and Q that end with p and q, respectively. We take the corresponding trees T(P)

and T(Q) of F. We add a node v(e) (representing edge e) to F and make T(P) and T(Q)

its subtrees.

• When a final Alg-edge e = (p, q) is added to the graph, it turns an alternating path P

into an alternating cycle C. We then simply say that the tree T(P) that corresponded to P,

now corresponds to C.

An example of the graph and the associated forest F is presented in Figure 3.1.

For any tree node w, we define its weight weight(w) as the cost of the corresponding

matching edge, i.e., the cost of an Opt-edge for a leaf and the cost of a non-final Alg-edge for

a non-leaf node. For any node w, by Tw we denote the tree rooted at w. We extend the notion

of weight in a natural manner to all subtrees of F. In these terms, the weight of a tree T in F is

equal to the total cost of the corresponding alternating path. (If T represents an alternating

cycle C, then its weight is equal to the cost of C minus the cost of the final Alg-edge from C.)

3.3. ANALYSIS 39

o1

o3

o2 o4

o5

o6

o7o8

o9

a1a2

a3

a4

a5

a6

a7

v(o7)

v(o8)

v(o9)

v(o1)

v(o2) v(o3)

v(o4) v(o5)v(o6)

v(a1)v(a3)

v(a4)

v(a5)

v(a6)

Figure 3.1: The left side contains an example graph consisting of all Opt-edges o1, o2, . . . , o9 (dashed

lines) and the first κ = 7 Alg-edges a1, a2, . . . , a7 (solid lines). Alg-edges are numbered in the order

they were created and added to the graph. Shaded Alg-edges (a2 and a7) are final, the remaining ones

are non-final. The right side depicts the corresponding forest F: leaves of F represent Opt-edges and

non-leaf nodes of F correspond to non-final Alg-edges. Trees rooted at nodes v(o1) and v(a5) represent

alternating cycles and those rooted at nodes v(a6) and v(o8) represent alternating paths in the graph.

Note that we consistently used terms “points” and “edges” for objects that Alg and Opt

are operating on in the metric space M. On the other hand, the term “nodes” will always refer

to tree nodes in F and we will not use the term “edge” to denote an edge in F.

3.3.2 Outline of the analysis

Our approach to bounding the cost of Alg is now as follows. We look at the forest F at the

end of Alg execution. The corresponding graph contains only alternating cycles. The cost of

non-final Alg-edges is then, by the definition, equal to the total weight of internal (non-leaf)

nodes of F, while the cost of Opt-edges is equal to the total weight of leaves of F. Hence, our

goal is to relate the total weight of any tree to the weight of its leaves.

The central piece of our analysis is showing that for any internal node w with children

u and v, it holds that weight(w) ≤ ξ ·min{weight(Tu), weight(Tv)}, where ξ is a constant

depending on parameters α and β (see Corollary 3.1). Using this relation, we will bound the

total weight of any tree by O(mlog2 (ξ+2)−1) times the total weight of its leaves. This implies

the same bound on the ratio between non-final Alg-edges and Opt-edges on each alternating

cycle.

40 CHAPTER 3. MATCHING WITH DELAYS

Finally, we show that the cost of final Alg-edges incurs at most an additional constant

factor in the total cost of Alg.

3.3.3 Cost of non-final ALG-edges

As described in Section 3.3.1, when Alg adds a κ-th Alg-edge e to the graph, and this edge

is non-final, e joins two (κ− 1)-step maximal alternating paths P and Q. We will bound Alg(e)

by a constant (depending on α and β) times min{cost(P), cost(Q)}. We start with bounding

the waiting cost of Alg related to one endpoint of e.

Lemma 3.1. Let e = (p, q) be the κ-th Alg-edge added at time τ, such that e is non-final. Let

P = (a1, a2, . . . , a`) be the (κ − 1)-step maximal alternating path ending at p = a1. Then, waitτ(p) ≤

max{α−1, β/(β− 1)} · cost(P).

Proof. First we lower-bound the cost of an alternating path P. We look at any edge (ai, ai+1)

from P. Its cost (no matter whether paid by Alg or Opt) is certainly larger than dist(ai, ai+1) +

|atime(ai) − atime(ai+1)|. Therefore, using triangle inequality (on distances and times), we

obtain

cost(P) ≥
`−1

∑
i=1

(dist(ai, ai+1) + |atime(ai)− atime(ai+1)|)

≥ dist(a1, a`) + |atime(a1)− atime(a`)|. (3.1)

Therefore, in our proof we will simply bound waitτ(p) = waitτ(a1) using either dist(a1, a`) or

|atime(a1)− atime(a`)|.

Recall that Alg matches a1 at time τ. Consider the state of a` at time τ. If a` has not been

presented to Alg yet (atime(a`) > τ), then waitτ(a1) = τ− atime(a1) < atime(a`)− atime(a1) <

β/(β− 1) · (atime(a`)− atime(a1)), and the lemma follows.

In the remaining part of the proof, we assume that a` was already presented to the algorithm

(atime(a`) ≤ τ). As P is a (κ− 1)-step maximal alternating path, a` is not matched by Alg right

after Alg creates (κ − 1)-th matching edge. The earliest time when a` may become matched

is when Alg creates the next, κ-th matching edge, i.e., at time τ. Therefore a` is not matched

before time τ.

Now observe that there must be a reason for which requests a1 and a` have not been

matched with each other before time τ. Roughly speaking, either the sum of budgets of

requests a1 and a` does not suffice to cover the cost of dist(a1, a`) or one of them waits

3.3. ANALYSIS 41

significantly longer than the other. Formally, we apply Observation 3.1 to the pair (a1, a`)

obtaining three possible cases. In each of the cases we bound waitτ(a1) appropriately.

Insufficient budgets: If α · (waitτ(a1) + waitτ(a`)) ≤ dist(a1, a`), then by non-negativity of

waitτ(a`), it follows that waitτ(a1) ≤ α−1 · dist(a1, a`).

a1 waited much longer than a`: If α · (waitτ(a1) + waitτ(a`)) > dist(a1, a`) and waitτ(a1) ≥

β · waitτ(a`), then atime(a`)− atime(a1) = waitτ(a1)− waitτ(a`) ≥ (1− 1/β) · waitτ(a1).

Therefore, waitτ(a1) ≤ β/(β− 1) · |atime(a1)− atime(a`)|.

a` waited much longer than a1: If α · (waitτ(a1) + waitτ(a`)) > dist(a1, a`) and waitτ(a`) ≥

β · waitτ(a1), then atime(a1) − atime(a`) = waitτ(a`) − waitτ(a1) ≥ (β − 1) · waitτ(a1).

Thus, waitτ(a1) ≤ 1/(β− 1) · |atime(a1)− atime(a`)| < β/(β− 1) · |atime(a1)− atime(a`)|.

Lemma 3.2. Let e = (p, q) be the κ-th Alg-edge, such that e is non-final. Let P = (a1, a2, . . . , a`)

and Q = (b1, b2, . . . , b`′) be the (κ − 1)-step maximal alternating path ending at p = a1 and q = b1,

respectively. Then,

Alg(e) ≤ (1 + α) · (β + 1) ·max{α−1, β/(β− 1)} ·min{cost(P), cost(Q)}.

Proof. Let τ be the time when p is matched with q by Alg. Using the definition of Alg, we

obtain

Alg(p, q) = dist(p, q) + waitτ(p) + waitτ(q)

≤ budgetτ(p) + budgetτ(q) + waitτ(p) + waitτ(q)

= (1 + α) · (waitτ(p) + waitτ(q))

≤ (1 + α) · (β + 1) ·min{waitτ(p), waitτ(q)}. (3.2)

The first inequality follows by the budget sufficiency condition of Alg and the second one by

the budget balance condition.

By Lemma 3.1, we have waitτ(p) ≤ max{α−1, β/(β− 1)} · cost(P) and waitτ(q) ≤ max{α−1,

β/(β− 1)} · cost(Q), which combined with (3.2) immediately yield the lemma.

Recall now the iterative construction of the forest F from Section 3.3.1: whenever a non-final

matching edge e created by Alg joins two alternating paths P and Q, we add a new node w

to F, such that weight(w) = Alg(e) and make trees T(P) and T(Q) its children. These trees

42 CHAPTER 3. MATCHING WITH DELAYS

correspond to paths P and Q, and satisfy weight(T(P)) = cost(P) and weight(T(Q)) = cost(Q).

Therefore, Lemma 3.2 immediately implies the following equivalent relation on tree weights.

Corollary 3.1. Let w be an internal node of the forest F whose children are u and v. Then,

weight(w) ≤ (1 + α) · (β + 1) ·max
{

α−1, β/(β− 1)
}
·min {weight(Tu), weight(Tv)} .

This relation can be used to express the total weight of a tree of F in terms of the total

weight of its leaves. Before we bound the cost of Alg on non-final edges of a single alternating

cycle, we need a further technical claim that will facilitate the inductive proof.

Lemma 3.3. Fix any constant ξ ≥ 0 and let f (a) = alog2(ξ+2). Then,

ξ ·min{ f (x), f (y)}+ f (x) + f (y) ≤ f (x + y)

for all x, y ≥ 0.

Proof. Fix any z ≥ 0 and let gz(a) = (ξ + 1) · f (a) + f (z− a). We observe that gz(0) = f (z) and

gz(z/2) = (ξ + 1) · f (z/2) + f (z/2) = (ξ + 2) · (z/2)log2(ξ+2) = zlog2(ξ+2) = f (z). Moreover,

the function gz is convex in the interval [0, z] as it is a sum of two convex functions. As

gz(0) = gz(z/2) = f (z), by convexity, gz(a) ≤ f (z) for any a ∈ [0, z/2].

To prove the lemma, assume without loss of generality that x ≤ y. By the monotonicity,

f (x) ≤ f (y), and therefore

ξ ·min{ f (x), f (y)}+ f (x) + f (y) = (ξ + 1) · f (x) + f ((x + y)− x)

= gx+y(x)

≤ f (x + y).

The last inequality follows as x ≤ (x + y)/2.

Lemma 3.4. Let T be a weighted full binary tree and ξ ≥ 0 be any constant. Assume that for each inter-

nal node w with children u and v, their weights satisfy weight(w) ≤ ξ ·min{weight(Tu), weight(Tv)}.

Then,

weight(T) ≤ (ξ + 2) · |LT(T)|log2(ξ/2+1) · weight(LT(T)),

where LT(T) is the set of leaves of T and weight(LT(T)) is their total weight.

Proof. We scale weights of all nodes, so that the average weight of each leaf is 1, i.e., we define

a scaled weight function ws as

ws(w) = weight(w) · |LT(T)|
weight(LT(T))

.

3.3. ANALYSIS 43

Note that ws also satisfies ws(w) ≤ ξ ·min{ws(Tu), ws(Tv)}. Moreover, since we scaled all

weights in the similar way, ws(T)/ws(LT(T)) = weight(T)/weight(LT(T)), and hence to show

the lemma, it suffices to bound the term ws(T)/ws(LT(T)).

For any node w ∈ T and the corresponding subtree Tw rooted at w, we define size(Tw) =

ws(LT(Tw)) + |LT(Tw)|. We inductively show that for any node of w ∈ T, it holds that

ws(Tw) ≤ size(Tw)
log2(ξ+2). (3.3)

For the induction basis, assume that w is a leaf of T. Then,

ws(Tw) = ws(LT(Tw)) ≤ size(Tw) ≤ size(Tw)
log2(ξ+2),

where the last inequality follows as size(Tw) ≥ |L(Tw)| = 1 and ξ ≥ 0.

For the inductive step, let w be a non-leaf node of T and let u and v be its children. Then,

ws(Tw) = ws(Tu) + ws(Tv) + ws(w)

≤ ws(Tu) + ws(Tv) + ξ ·min {ws(Tu), ws(Tv) }

≤ size(Tu)
log2(ξ+2) + size(Tv)

log2(ξ+2)

+ ξ ·min
{

size(Tu)
log2(ξ+2), size(Tv)

log2(ξ+2)
}

≤ (size(Tu) + size(Tv))
log2(ξ+2)

= size(Tw)
log2(ξ+2).

The first inequality follows by the lemma assumption and the second one by the inductive

assumptions for Tu and Tv. The last inequality is a consequence of Lemma 3.3 and the final

equality follows by the additivity of function size.

Recall that we scaled weights so that ws(LT(T)) = |LT(T)|. Therefore, applying (3.3)

to the whole tree T yields ws(T) ≤ (ws(LT(T)) + |LT(T)|)log2(ξ+2) = (2 · |LT(T)|)log2(ξ+2) =

(ξ + 2) · |LT(T)|log2(ξ+2). Hence,

weight(T)
weight(LT(T))

=
ws(T)

ws(LT(T))
≤ (ξ + 2) · |LT(T)|log2(ξ+2)

|LT(T)|
= (ξ + 2) · |LT(T)|log2(ξ/2+1),

which concludes the proof.

Lemma 3.5. Let C be an alternating cycle obtained from combining matchings of Alg and Opt. Then

AlgNF(C) ≤ (ξ + 2) ·mlog2(ξ/2+1) ·Opt(C), where ξ = (1 + α) · (β + 1) ·max{α−1, β/(β− 1)}.

Proof. As described in Section 3.3.1, C is associated with a tree T from forest F, such that

Opt-edges of C correspond to the set of leaves of T (denoted L(T)) and non-final Alg-edges

44 CHAPTER 3. MATCHING WITH DELAYS

of C correspond to internal (non-leaf) nodes of T. Hence, Opt(C) = weight(LT(T)) and

AlgNF(C) + Opt(C) = weight(T).

By Corollary 3.1, the weight of any internal tree node w with children u, v satisfies

weight(w) ≤ ξ ·min{weight(Tu), weight(Tv)}. Therefore, we may apply Lemma 3.4 to tree T,

obtaining weight(T) ≤ (ξ + 2) · |LT(T)|log2(ξ/2+1) · weight(L(T)), and thus

AlgNF(C) ≤ weight(T) ≤ (ξ + 2) · |L(T)|log2(ξ/2+1) · weight(L(T))

≤ (ξ + 2) ·mlog2(ξ/2+1) · weight(L(T))

= (ξ + 2) ·mlog2(ξ/2+1) ·Opt(C).

The last inequality follows as |LT(T)|, the number of T leaves, is equal to the number of

Opt-edges on cycle C, which is clearly at most m.

3.3.4 Cost of final ALG-edges

In the previous section, we derived a bound on the cost of all non-final Alg-edges. The

following lemma shows that the cost of final Alg-edges contribute at most a constant factor to

the competitive ratio.

Lemma 3.6. Let e be a final Alg-edge matched at time τ and C be the alternating cycle containing e.

Then Alg(e) ≤ (1 + α) ·max{α−1, (β + 1)/(β− 1)} · (AlgNF(C) + Opt(C)).

Proof. Fix a final Alg-edge e = (p, q), where atime(q) ≥ atime(p). By the budget sufficiency

condition of Alg,

Alg(e) ≤ (1 + α) · (waitτ(p) + waitτ(q)). (3.4)

Our goal now is to bound waitτ(p) + waitτ(q) in terms of dist(p, q) or atime(q)− atime(p).

Observe that whenever Alg matches two requests, the budget sufficiency condition of Alg or

one of the inequalities of the budget balance condition is satisfied with equality. We apply this

observation to the pair (p, q).

• If the budget sufficiency condition holds with equality, then α · (waitτ(p) + waitτ(q)) =

dist(p, q), and therefore waitτ(p) + waitτ(q) = α−1 · dist(p, q).

• If the budget balance condition holds with equality, β · waitτ(q) = waitτ(p). Then,

(β− 1) · (waitτ(p) + waitτ(q)) = (β− 1) · (β + 1) · waitτ(q)

= (β + 1) · (waitτ(p)− waitτ(q))

= (β + 1) · (atime(q)− atime(p)).

3.4. LOWER BOUNDS AND TIGHTNESS 45

Hence, in either case it holds that

waitτ(p) + waitτ(q) ≤ max
{

α−1,
β + 1
β− 1

}
· (dist(p, q) + |atime(q)− atime(p)|). (3.5)

Finally, we bound dist(p, q) + |atime(q)− atime(p)| in terms of costs of other edges of C.

These edges form a path P = (a1, a2, . . . , a`), where a1 = p and a` = q. By the triangle

inequality applied to distances and time differences (in the same way as in (3.1)), we obtain

that

dist(p, q) + |atime(q)− atime(p)| ≤ cost(P) = AlgNF(C) + Opt(C). (3.6)

The lemma follows immediately by combining (3.4), (3.5) and (3.6).

3.3.5 The competitive ratio

Finally, we optimize constants α and β used throughout the previous sections and bound

the competitiveness of Alg.

Theorem 3.1. For β = 2 and α = 1/2, the competitive ratio of algorithm Alg is O(mlog2 5.5) =

O(m2.46), where 2m is the number of requests in the input sequence.

Proof. The union of matchings constructed by Alg and Opt can be split into a set C of disjoint

cycles. It is sufficient to show that we have the desired performance guarantee on each cycle

from C.

Fix a cycle C ∈ C. Let e = (p, q) be the final Alg-edge of C. By Lemma 3.6, Alg(e) ≤

4.5 · (AlgNF(C) + Opt(C)). Therefore, the competitive ratio of Alg is at most

Alg(C)
Opt(C)

≤ 5.5 ·AlgNF(C) + 4.5 ·Opt(C)
Opt(C)

≤ O
(

mlog2 5.5
)
= O

(
m2.46

)
,

where the second inequality follows by Lemma 3.5.

3.4 Lower bounds and tightness

It is not known whether the analysis of our algorithm is tight. However, one can show that

its competitive ratio is at least Ω(mlog2 1.5) = Ω(m0.58). To this end, assume that all requests

arrive at the same time. For such input, Opt does not pay for delays and simply returns the

min-cost perfect matching. On the other hand, Alg computes the same matching as a greedy

routine (i.e., it greedily connects two nearest, not yet matched requests). Hence, even if we

46 CHAPTER 3. MATCHING WITH DELAYS

neglect the delay costs of Alg, its competitive ratio would be at least the approximation ratio

of the greedy algorithm for min-cost perfect matching. The latter was shown to be Θ(mlog2 1.5)

by Reingold and Tarjan [RT81].

The reasoning above indicates an inherent difficulty of the problem. In order to beat the

Ω(mlog2 1.5) barrier, an online algorithm has to handle settings when all requests are given

simultaneously more effectively. In particular, for such and similar input instances it has to

employ a non-local and non-greedy policy of choosing requests to match.

Chapter 4

Steiner tree leasing

4.1 Introduction

The traditional network design [GK11] focuses on graph optimization problems, in which

an algorithm purchases bandwidth on links to maintain certain graph properties, such as

connectivity or throughput. A standard feature of most considered models is the permanence

of bandwidth allocations. For example, in the Steiner tree problem [WH16], the goal is to buy

a subset of edges connecting a given set of terminals to the chosen root node r. Even the online

flavor of this problem [AA92, Ang09, IW91, Mat16, WY95] has this feature: the terminals arrive

in online manner, and an algorithm irrevocably buys additional links, so that the terminals

seen so far are connected to the root r. In this setting, each purchase is everlasting, i.e., the

problem should be rather termed incremental Steiner tree.

Rent-or-buy variants. A well-studied modification of the online Steiner tree scenario is to

relax the need of upfront commitment and additionally allow an algorithm to rent edges (at

a fraction of the edge purchase price). Each terminal must be connected to the root r using

either type of edges, but rented edges are valid only for a single terminal and cannot be reused

by subsequent ones. This variant is called online single-source rent-or-buy [AK98, ABF93, BFR95,

BS89, FGS04, LRWY99, Umb15] and is also equivalent to the file replication problem.

Note that the rent-or-buy variant is still incremental: bought edges persist in the graph till

the end and — if a request to connect a specific terminal appears sufficiently many times in the

input — any reasonable algorithm finally buys a path connecting this terminal to the root r.

47

48 CHAPTER 4. STEINER TREE LEASING

Leasing variants. Many markets give an option of temporary leasing of resources. In par-

ticular, the advent of digital services in cloud computing changed the business model from

buying physical servers to leasing virtual ones. This allowed companies to adapt quickly

to varying requirements of their customers [AFG+
09]. Furthermore, the software-defined

networking enabled similar mechanisms on the network level, allowing companies to lease

network links on the fly [CB10]. Typically, possible leases have different lengths and costs, and

obey economies of scale, e.g., leasing a link for a week is more expensive than leasing it for

a day, but not more than seven times. One can view rent-or-buy variants as an extreme case of

leasing, where only two leases are available: a lifetime one (buying) and a lease of infinitesimal

duration (renting).

These trends motivate the study of algorithmic leasing variants of popular network design

mechanisms [AKM+
15, AMM14, AG07, Mey05, NW13]. Note that from the algorithmic stand-

point, leasing variants have a truly online nature: leases have finite duration and expire after

some time. An online algorithm has to adapt itself to varying access patterns, e.g., by acquiring

longer leases in response to increased demand.

4.1.1 The model

In this chapter, we study the online variant of the Steiner tree leasing problem introduced

by Meyerson [Mey05]. The problem is defined in a weighted undirected graph G with

a distinguished root node r ∈ V(G). For each pair of nodes u and v, by dG(u, v) we denote the

length (with respect to edge weights) of the shortest path between u and v. There is a known

set L of available lease types, where each type ` ∈ L is characterized by its duration D` and

cost ratio C`. We denote the number of leases by L = |L|.

An input to the problem consists of a sequence σ of requests, each being a terminal

(a node of G), arriving sequentially in an online manner. We treat the root r also as a terminal.

We assume that each request arrives at a different time (arrival times are real non-negative

numbers). In response to a requested terminal σt, which appears at time t, an online algorithm

has to connect σt to r using leased edges in G, leasing additional ones if necessary. (We note

that a terminal may occur multiple times in sequence σ.) If an algorithm acquires a lease

type ` ∈ L of an edge e = (u, v), it pays C` · dG(u, v). The edge leased at time t remains

available for the period [t, t + D`); afterwards the lease expires.

To recap, an input instance I is a tuple (G, dG, r,L; σ), where G, dG, r, and L are known

4.1. INTRODUCTION 49

a priori, and σ is presented in an online fashion to an algorithm. The total cost of edges leased

by an algorithm is subject to minimization.

4.1.2 Previous results

The Steiner tree leasing problem on a single edge is known as the parking permit problem

for which optimally competitive algorithms were given by Meyerson [Mey05]: a deterministic

O(L)-competitive one and a randomized O(log L)-competitive one. (Note that the rent-or-buy

variant on a single edge is equivalent to the classic ski rental problem with a trivially achievable

constant competitive ratio.)

The randomized algorithm can be extended to trees [Mey05]. As any n-node graph can be

approximated by a random tree with expected distortion of O(log n) [FRT04], this approach

yields a randomized O(log L · log n)-competitive solution for graphs.

Better or non-randomized algorithms were known only for specific variants of Steiner

tree leasing. In particular, for a rent-or-buy variant (recall that it corresponds to a special

2-lease variant, where the cheaper lease suffices only for serving a single request, and the

more expensive lease lasts forever) Awerbuch, Azar and Bartal gave a randomized O(log k)-

competitive algorithm and O(log2 k)-deterministic one [AAB04]. The latter result was improved

to O(log k) only recently by Umboh [Umb15]. In these results, k denotes the number of different

terminals in an input.

Other network design problems were also studied in leasing context. In particular, a ran-

domized O(log L · log n)-competitive algorithm was given for the Online Steiner Forest Leasing

by Meyerson [Mey05]. Deterministic algorithms for this problem are known only for the

rent-or-buy subcase, for which an optimal competitive ratio of O(log k) was achieved by

Umboh [Umb15]. Other problems include the facility location [AKM+
15, NW13] and the set

cover [AMM14].

4.1.3 Our contribution

In this chapter, we present the first deterministic online algorithm for Steiner tree leasing.

Our algorithm is O(L · log k)-competitive. It outperforms the randomized O(log L · log n)-

competitive solution by Meyerson [Mey05] when k (the number of different terminals in the

input) is small.

While the result might not be optimal, neither O(L) nor O(log k) can be beaten by a de-

terministic solution: Ω(L) bound follows by the lower bound on the parking permit problem

50 CHAPTER 4. STEINER TREE LEASING

(which is equivalent to Steiner tree leasing on a single edge) and Ω(log k) bound follows by

the online Steiner tree problem (which is a specific case of Steiner tree leasing with a single

lease of the infinite duration).

In our solution (presented in Section 4.4), a path that connects a requested terminal to an

already existing Steiner tree is chosen greedily. However, we still have to decide which lease

type to use for such path. To this end, we check how many requests were “recently” served

in a “neighborhood” of the currently requested terminal; once certain thresholds are met,

more expensive leases are acquired. While such approach is natural, the main difficulty stems

from the dynamics of the leased edges. Namely, while in the rent-or-buy scenario the Steiner

tree maintained by an algorithm may only grow, in the leasing variant it may also shrink as

edge leases expire. As a result, the already aggregated serving cost may cease to be sufficient

to cover a more expensive lease for the new connection. Coping with this issue is the main

challenge we tackle in this chapter.

We use a recent analysis technique by Umboh [Umb15]: the online algorithm is run

on a graph G, but its cost is compared to the cost of Opt run on a tree T. This tree T

is a hierarchically separated tree (HST), whose leaves are requested terminals and whose

distances dominate graph distances. By showing that our algorithm is O(L)-competitive

against Opt on T, for any choice of T, we obtain that it is O(L · log k)-competitive against Opt

on the original graph G. The details of this reduction are presented in Section 4.2.

We emphasize that the competitive ratio of our algorithm is a function of the number of

different terminals, k, and not the number of nodes in the graph, n, as it is the case for the

randomized algorithm of [Mey05]. In fact, our algorithm and its analysis work without changes

also in any (infinite) metric space, e.g., on the Euclidean plane; in the chapter, we use the graph

terminology for simplicity.

4.2 HST embeddings

In this section, we show how to use hierarchically separated trees (HSTs) for the analysis

of an algorithm for the Steiner tree leasing problem. Unlike many online constructions for

network design problems (see, e.g., [AA97, Mey05]), here HSTs are not used for an algorithm

construction. Moreover, in our analysis, an HST will approximate not the whole graph, but

only the subgraph spanned by terminals.

Definition 4.1 (Dominating HST embedding of terminals). Fix any instance I = (G, dG, r,L; σ)

of Steiner tree leasing. Let X ⊆ V(G) be the set of terminals requested in σ (including the root r).

4.2. HST EMBEDDINGS 51

Assume that the minimum distance between any pair of nodes from X is at least 1. (For analysis, we may

always scale the instance, so that this property holds.) A dominating HST embedding of terminals

of I is a rooted tree T with pairwise distances given by metric dT, satisfying the following properties.

1. The leaves of T are exactly the nodes of X and they are on the same level.

2. The distance from any leaf of T to its parent is 1.

3. The edge lengths increase by a factor of 2 on any leaf-to-root path.

4. dT dominates dG, i.e., dT(u, v) ≥ dG(u, v) for any pair of nodes u, v ∈ X.

Fix now any instance I = (G, dG, r,L; σ) of Steiner tree leasing and let (T, dT) be any

dominating HST embedding of terminals of I . Let IT = (T, dT, r,L; σ) be the instance I , where

graph G was replaced by tree T with distances given by dT.

While estimating Opt(I) directly may be quite involved, lower-bounding Opt(IT) is much

easier. In particular, for each request σt there is a unique path in T connecting σt with r. As dT

dominates dG, it is also feasible to compare the cost of an online algorithm on I to Opt(IT).

Finally, it is possible to relate Opt(IT) to Opt(I) as stated in the following lemma, due to

Umboh [Umb15].

Lemma 4.1. Let I = (G, dG, r,L; σ) be an instance of Steiner tree leasing and let X be the set

of terminals of I . There exists a dominating HST embedding (T∗, dT∗) of terminals X, such that

Opt(IT∗) ≤ O(log |X|) ·Opt(I), where IT∗ = (T∗, dT∗ , r,L; σ).

Proof. Fix any dominating HST embedding (T, dT) of terminals X. The solution Opt(I) is

a schedule that leases particular edges of G at particular times. Let Off(IT) be an offline

solution that, for any leased edge e = (u, v) in Opt(I), leases all edges on the unique path

in T from u to v, using the same lease type. While it is not necessary for the proof, it is worth

observing that, by the domination property (cf. Definition 4.1), Opt(I) ≤ Off(IT).

By the FRT approximation [FRT04], there exists a probability distribution D over dominating

HST embeddings (T, dT) of X, such that ET∼D[dT(u, v)] ≤ O(log |X|) · dG(u, v) for all u, v ∈ X.

This relation summed over all edges (u, v) used in the solution of Opt(I) yields that

ET∼D[Off(IT)] ≤ O(log |X|) ·Opt(I).

By the average argument, there exists a dominating HST embedding (T∗, dT∗), such that

Off(IT∗) ≤ O(log |X|) ·Opt(I), and the proof follows by observing that Opt(IT∗) is at most

Off(IT∗).

52 CHAPTER 4. STEINER TREE LEASING

The lemma can be generalized to any network design problem whose objective function is

a linear combination of edge lengths. In Section 4.4, we will construct an algorithm for Steiner

tree leasing which is O(L)-competitive against the cost of Opt on any HST embedding. By

Lemma 4.1, this algorithm is O(L · log k)-competitive.

4.3 Interval model

In this section, we make several assumptions on the available leases. At the expense of

a constant increase of the competitive ratio, they will make the construction of our algorithm

easier. Similar assumptions were also made for the parking permit problem [Mey05].

Definition 4.2. In the interval model, the following conditions hold for the input instance.

• Costs factors and durations of all leases are powers of two.

• Lease types are sorted both by their costs and durations, i.e., if `′ < `, then D`′ < D` and

C`′ < C`.

• Fix any lease type ` and let Jm
` = [m · D`, (m + 1) · D`) for any m ∈ N. For any time t and

any edge, there is a unique lease of type ` that can be acquired by an algorithm: it is the lease for

period Jm
` containing t.

The last property of the interval model means that, unlike the standard leasing model

outlined in Section 4.1.1, if an algorithm leases an edge at a time t using a lease type ` ∈ L,

such transaction may occur within the lease duration. Hence, the acquired lease may expire

earlier than at time t + D`. We also define J`[t] to be the period Jm
` containing time t.

Observation 4.1. In the interval model, when lease of type ` expires, all leases of smaller types expire

as well.

Lemma 4.2. Any (online or offline) algorithm for the original leasing model can be transformed into an

algorithm for the interval model (and back) without changing its cost by more than a constant factor.

Proof. We introduce the changes in the model in three stages, ensuring that the cost of an

algorithm in each stage changes at most by a constant factor.

1. We round down costs of leases to powers of two. This changes the cost of any algorithm

at most by a factor of two.

4.4. ALGORITHM CONSTRUCTION 53

2. We round down durations of leases to powers of two and limit the possibility of their

purchase only to intervals Jm
` . Any algorithm that is feasible in the modified model is

clearly feasible in the original model (it purchases the corresponding, non-shortened

leases at the same times). Furthermore, any lease in the original model is covered by

at most three (disjoint and time-adjacent) leases in the modified model. Therefore, any

algorithm feasible in the original model can be modified to work in the modified model

and this increases its cost at most by a factor of three.

3. Finally, if we have two lease types `, `′ ∈ L, such that D` ≤ D`′ and C` ≥ C`′ , no

reasonable algorithm uses ` in its schedule, and hence we may remove such lease types

from L.

The lemma above shows that R-competitive algorithm for the interval model, is O(R)-

competitive for the original leasing model. Therefore, we will assume the interval model in the

remaining part of the chapter.

4.4 Algorithm construction

We present our algorithm Accumulate-and-Lease-Greedily (Alg). For simplicity of the

description, we assume that a given graph G is complete (with the metric given by dG). Such

assumption is without loss of generality, as leasing the edge (u, v) can be always replaced by

leasing a shortest path connecting u and v.

We will say that an edge e is `-leased at time t, if an algorithm leased e for period J`[t]

using lease type `. Additionally, a request σt is `-leased if at time t an algorithm `-leases an

edge e = (σt, u) for some u.

By F`[t] and Fm
` we denote the set of all requests that arrived during J`[t] and Jm

` , respectively.

Furthermore, T≥`[t] denotes the set of requests that are connected, at time t, to the root r using

edges of lease types at least `.

High-level idea. In the execution of Alg, at any time t, the set of all currently leased edges

will be a single (possibly empty) tree, called the Steiner tree of Alg. Furthermore, on any path

from the root r that consists of leased edges, the closer we are to the root, the longer leases

54 CHAPTER 4. STEINER TREE LEASING

we have. In effect, T≥`[t] always forms a tree. Moreover, when leases expire, the set of leased

edges shrinks, but it remains connected.

When a request σt arrives, we check whether we can afford a lease ` for σt, starting from

the longest (and the most expensive) available lease: We compute the distance d from σt

to T≥`[t]. Then, we check if there were “sufficiently many” requests served “recently” in

a “small” (compared to d) neighborhood of σt. If so, then we connect σt to T≥`[t] using lease

type `.

Algorithm description. More precisely, fix any time t when a request σt is presented to Alg.

Alg checks, for each lease type ` starting from the most expensive (the L-th one), what the

cost of connecting σt to the tree T≥`[t] would be. That is, among all the nodes of T≥`[t], it

finds the node x` closest to σt. If we `-lease the edge (σt, x`) at the cost C` · dG(σt, x`), then σt

becomes connected to the root r via a path of leased edges (of lease type at least `). We round

the distance dG(σt, x`) up to the smallest power of two, denoted 2j. Then, we look at the set Nt
`

(cf. Line 7 in Algorithm 1) of requests that

• arrived at any time in J`[t],

• are at distance at most 2j/4 from σt,

• are of class j (i.e., upon their arrival, Alg connected them to its Steiner tree, using an

edge of length from (2j−1, 2j], i.e., roughly dG(σt, x`)).

Note that the terminals of Nt
` are not necessarily connected to the Steiner tree of Alg at

time t. If the number of requests in Nt
` is at least C`/C1, then Alg `-leases the edge (σt, x`)

and sets the class of σt to j. Otherwise, Alg proceeds to cheaper lease types. If no lease type `

satisfies the condition |Nt
`| ≥ C`/C1, Alg eventually 1-leases the edge (σt, x1). Note that Alg

leases exactly one edge for each terminal that is not connected to the tree at the time of its

arrival.

Pseudocode of Alg is given in Algorithm 1. We recall the property of Alg stated earlier in

its informal description.

Observation 4.2. For any time t and lease type ` ∈ L, T≥`[t] is a single tree.

4.5. ANALYSIS 55

Algorithm 1 Accumulate-and-Lease-Greedily for the Steiner tree leasing problem

1: while request σt arrives do

2: for `← L . . . 1 do

3: if σt is not connected to the root r with a path of leased edges then

4: /* Check whether we can afford lease ` for σt */

5: let x` be the node of T≥`[t] closest to σt

6: j← dlog dG(σt, x`) e

7: Nt
` ← { f ∈ F`[t] : dG(σt, f) ≤ 2j−2 and class(f) = j}

8: if |Nt
`| · C1 ≥ C` or ` = 1 then

9: `-lease the edge (σt, x`)

10: class(σt)← j

11: end if

12: end if

13: end for

14: end while

4.5 Analysis

Throughout this section, we fix an input instance I = (G, dG, r,L; σ) and a corresponding

“tree instance” IT = (T, dT, r,L; σ), where (T, dT) is a dominating HST embedding of terminals

of I (cf. Section 4.2).

Without loss of generality, we assume that when a request σt arrives, it is not yet connected

to the Steiner tree of Alg (otherwise σt would be ignored by Alg). If σt was `-leased, then we

call Nt
` (computed in Line 7 of Algorithm 1) its neighbor set. We denote the set of all requests of

class j by Wj. Additionally, let W`
j consist of all requests from Wj that were `-leased.

A brief idea of the proof is as follows. Suppose each request σt ∈ Wj receives a credit of

C1 · 2j when it arrives. If σt was `-leased, the actual cost paid by Alg was C` · 2j. While the

latter amount can be much larger for an individual request σt, in Section 4.5.1, we show that,

for any fixed lease type `, the total cost paid for `-leased edges is bounded by the sum of all

requests’ credits. In Section 4.5.2, we exploit properties of dominating HST embeddings to

show how all credits can be charged (up to constant factors) to the leasing costs Opt pays for

particular edges of the tree T. Altogether, this will show that Alg(I) ≤ O(L) ·Opt(IT). Along

with Lemma 4.1, this will bound the competitive ratio of Alg (see Section 4.5.3).

56 CHAPTER 4. STEINER TREE LEASING

4.5.1 Upper bound on ALG

The core of this section is Lemma 4.4, which essentially states that for any lease type `, all

requests’ credits can cover all leases of type `. Before proceeding to its proof, we first show the

following structural property.

Lemma 4.3. Fix a class j, a lease type `, and a pair of distinct requests σs, σt ∈ W`
j . Their neighbor

sets, Nt
` and Ns

` , are disjoint.

Proof. Without loss of generality, s < t. We will prove the lemma by contradiction. Assume

there exists a request σu ∈ Ns
` ∩ Nt

`.

By the definition of neighbor sets, σu ∈ F`[s] ∩ F`[t]. In the interval model, there are only

two possibilities: either periods J`[s] and J`[t] are equal or they are disjoint. As in the latter

case the corresponding sets F`[s] and F`[t] would be disjoint as well, it holds that J`[s] = J`[t].

As the leases of type ` that Alg bought for σt and σs started and expired at the same time,

σs was in the tree T≥`[t] when σt arrived. Thus, the distance between σt and the tree T≥`[t] was

at most dG(σt, σs). From the triangle inequality and diameters of sets Ns
` and Nt

`, it follows

that dG(σt, σs) ≤ dG(σt, σu) + dG(σu, σs) ≤ 2j−2 + 2j−2 = 2j−1. Hence, the request σt would be

of class j− 1 or lower, which would contradict its choice.

Lemma 4.4. For any class j and a lease type ` ∈ L, C` · |W`
j | ≤ C1 · |Wj|.

Proof. The lemma follows trivially for ` = 1, and therefore we assume that ` ≥ 2.

We look at any request σt ∈ W`
j and its neighbor set Nt

`. As σt is of class j, Nt
` contains

requests only of class j, i.e., Nt
` ⊆ Wj. By Lemma 4.3, the neighbor sets of all requests from W`

j

are disjoint, and hence ∑σt∈W`
j
|Nt

`| ≤ |Wj|.

As Alg `-leases request σt, its neighbor set Nt
` contains at least C`/C1 requests. Therefore,

|Wj| ≥ ∑σt∈W`
j
|Nt

`| ≥ ∑σt∈W`
j

C`/C1 = |W`
j | · C`/C1.

Lemma 4.5. For any input I , it holds that Alg(I) ≤ L ·∑j |Wj| · C1 · 2j.

Proof. The cost of serving any request σt ∈W`
j is at most C` · 2j. Using Lemma 4.4, we obtain

Alg(I) ≤ ∑`∈L ∑j |W`
j | · C` · 2j ≤ L ·∑j |Wj| · C1 · 2j.

4.5.2 Lower bound on OPT

In this part, we bound the sum of all requests’ credits by O(1) ·Opt(IT).

4.5. ANALYSIS 57

e

D(e)

level 0

level 1

level 2

r

Figure 4.1: An example of an HST embedding. Square nodes (leaves of the HST) represent terminals

from an input sequence (including root r). Edge e is a 2-level edge (of length 22). D(e) is the set of

leaves below edge e.

We number edge levels of T starting from bottom ones and counting from 0. That is,

a j-level edge is of length 2j. Moreover, for an edge e, we denote the set of all leaves below

it by D(e), see Figure 4.1. We denote the set of all j-level edges by Ej. The next observation

follows immediately by Definition 4.1.

Observation 4.3. Fix any j-level edge e. For any two leaves u, v ∈ D(e), it holds that dG(u, v) ≤

dT(u, v) ≤ 2j+1.

Lemma 4.6. For any request σt of class j ≥ 3, there exists an edge e ∈ Ej−3, such that σt ∈ D(e) and

e lies on the unique path from σt to the root r in T.

Proof. When Alg `-leases request σt and assigns class j to it, the distance between σt and

the tree T≥`[t] is larger than 2j−1, and thus dG(σt, r) > 2j−1. By Observation 4.3, the unique

path in T between r and σt must cross two (j− 2)-level edges, and hence also two (j− 3)-level

edges. We pick e to be the (j− 3)-level edge that is closer to σt (see Figure 4.1).

The lemma above implicitly creates a mapping ϕ from the set of all requests of class j ≥ 3

to edges in tree T: a request of class j (i.e., connected by Alg with an edge of length at most 2j)

is mapped to a tree edge of level j− 3 (of length 2j−3). Note that a request of class j could be

mapped to an edge in Ej−2. However, the next lemma requires that all the requests mapped to

an edge e are close to each other. We extend ϕ to include also the requests of classes j ≤ 2, by

mapping any such request σt to the edge e ∈ E0 adjacent to σt in tree T. In these terms, ϕ−1(e)

is a set of requests mapped to e. For an edge e of level j ≥ 1, ϕ−1(e) = D(e) ∩Wj+3, and for

e ∈ E0, we have ϕ−1(e) = D(e) ∩⋃3
j=0 Wj.

Let Opt(e) be the total leasing cost of e in the optimal solution for IT. Our goal now is

to show that the sum of credits of requests in ϕ−1(e) is at most O(Opt(e)). To do so, we first

prove a general bound on the amount of credit that holds for all possible periods Jm
` . Later on,

we will apply it to periods Jm
` when Opt leased edge e.

58 CHAPTER 4. STEINER TREE LEASING

Lemma 4.7. Fix a lease type ` > 1 and a j-level edge e of T. Then, for any m ∈N, |ϕ−1(e) ∩ Fm
` | ≤

8 · C`/C1.

Proof. We first assume that j ≥ 1 and we will show that |ϕ−1(e) ∩ Fm
` | ≤ C`/C1 + 1 ≤ 2 ·C`/C1.

For a contradiction, assume that ϕ−1(e) ∩ Fm
` contains more than b = C`/C1 + 1 requests.

Let σs and σt be the b-th and the (b + 1)-th of them, respectively. By Lemma 4.6, all requests

of ϕ−1(e) are of class j + 3 and are contained in D(e). By Observation 4.3, they are all within

a distance of 2j+1 from σs in the graph. Therefore, Ns
` , the neighbor set of σs considered by Alg,

contains all previous requests from ϕ−1(e) ∩ Fm
` (there are b− 1 = C`/C1 many of them). The

condition at Line 8 of Algorithm 1 is thus fulfilled, and therefore Alg buys a lease of type at

least ` for σs.

In effect, when σt arrives, σs is in T≥`[t]. Hence, the distance from σt to the tree T≥`[t] in the

graph is at most dG(σt, σs) ≤ dT(σt, σs) ≤ 2j+1. Therefore, the class of σt is at most j + 1, which

contradicts the choice of σt.

The analysis above can be extended to any 0-level edge e. Because D(e) for e ∈ E0 contains

exactly one terminal, all requests from ϕ−1(e) ∩ Fm
` are always contained in the appropriate

neighbor set. This implies that |ϕ−1(e) ∩ Fm
` ∩ Wi| ≤ 2 · C`/C1 for any class i ∈ {0, 1, 2, 3}.

As ϕ−1(e) = D(e) ∩ ⋃3
i=0 Wi, we obtain |ϕ−1(e) ∩ Fm

` | ≤ 4 · 2 · C`/C1.

Lemma 4.8. Fix a j-level edge e of T. Then, |ϕ−1(e)| · C1 · 2j ≤ 8 ·Opt(e).

Proof. By Lemma 4.6, for each request σt in ϕ−1(e), Opt has to have edge e leased at time t, as

edge e lies on the only path between σt and the root r (see also Figure 4.1).

Let P(e) be the set of all pairs (`, m), such that Opt `-leases e for period Jm
` . That is,

Opt(e) = ∑(`,m)∈P(e) C` · 2j. In the optimal solution Jm
` periods are pairwise disjoint for all

pairs (`, m) in P(e), and hence so are sets Fm
` . Thus,

|ϕ−1(e)| · C1 · 2j = ∑
(`,m)∈P(e)

|ϕ−1(e) ∩ Fm
` | · C1 · 2j

≤ ∑
(`,m)∈P(e)

8 · C` · 2j = 8 ·Opt(e),

where the inequality follows by Lemma 4.7.

Lemma 4.9. For any input I and any dominating HST embedding (T, dT) of terminals of I , it holds

that ∑j |Wj| · C1 · 2j ≤ O(1) ·Opt(IT).

4.5. ANALYSIS 59

Proof. Fix any level j ≥ 1. Recall that all requests of class j + 3 (and only them) are mapped

by ϕ to edges from Ej. Hence, we obtain

|Wj+3| = ∑e∈Ej
|ϕ−1(e)|. (4.1)

On the other hand, all requests of class j ∈ {0, 1, 2, 3} (and only them) are mapped by ϕ to

edges from E0. Therefore, ∑j≤3 |Wj| = ∑e∈E0
|ϕ−1(e)|, and consequently

∑
j≤3
|Wj| · 2j ≤ 8 ∑

e∈E0

|ϕ−1(e)|. (4.2)

We use (4.1) and (4.2) to bound ∑j |Wj| · 2j:

∑
j≥0
|Wj| · C1 · 2j ≤ ∑

e∈E0

8 · |ϕ−1(e)| · C1 + ∑
j≥1

∑
e∈Ej

2j+3 · |ϕ−1(e)| · C1

= ∑
j≥0

∑
e∈Ej

8 · 2j · |ϕ−1(e)| · C1

≤ ∑
j≥0

∑
e∈Ej

8 · 8 ·Opt(e) = O(1) ·Opt(IT).

The second inequality is a consequence of Lemma 4.8.

4.5.3 The competitive ratio

Theorem 4.1. Accumulate-and-Lease-Greedily is O(L · log k)-competitive.

Proof. Fix an instance I = (G, dG, r,L; σ). By Lemma 4.1, there exists a dominating HST

embedding (T, dT), such that Opt(IT) ≤ O(log k) ·Opt(I), where IT = (T, dT, r,L; σ). By

Lemma 4.5, the total cost of Alg is at most L times the sum of all requests’ credits, ∑j |Wj| ·C1 · 2j.

By Lemma 4.9, the latter amount is at most O(1) · Opt(IT), and hence Alg(I) ≤ O(L) ·

Opt(IT) ≤ O(L · log k) ·Opt(I), which concludes the proof.

60 CHAPTER 4. STEINER TREE LEASING

Chapter 5

Generalized k-server problem in

uniform metrics

5.1 Introduction

The k-server problem, introduced by Manasse et al. [MMS90], is one of the most well-

studied and influential cornerstones of online analysis. The problem definition is deceivingly

simple: There are k servers, starting at a fixed set of k points of a metric space M. An input

is a sequence of requests (points of M) and to service a request, an algorithm needs to move

servers, so that at least one server ends at the request position. As typical for online problems,

the k-server problem is sequential in nature: an online algorithm Alg learns a new request

only after it services the current one. The cost of Alg is defined as the total distance traveled

by all its servers. The goal is to service all requests and minimize the total cost.

In a natural extension of the k-server problem, called the generalized k-server problem [KT04,

SS06], each server si remains in its own metric space Mi. The request is a k-tuple (r1, . . . , rk),

where ri ∈ Mi, and to service it, an algorithm needs to move servers, so that at least one

server si ends at the request position ri. The original k-server problem corresponds to the

case where all metric spaces Mi are identical and each request is of the form (r, . . . , r). The

generalized k-server problem contains many known online problems, such as the weighted

k-server problem [BEK17, CV13, CS04, FR94] or the CNN problem [Chr03, KT04, Sit14, SS06] as

special cases.

So far, the existence of an f (k)-competitive algorithm for the generalized k-server problem

in arbitrary metric spaces remains open. Furthermore, even for specific spaces, such as

the line [KT04] or uniform metrics [BEK17, BEKN18, CFK20, KT04], the generalized k-server

61

62 CHAPTER 5. GENERALIZED K-SERVER PROBLEM IN UNIFORM METRICS

problem requires techniques substantially different from those used to tackle the classic k-server

problems. For these reasons, studying this problem could lead to new techniques for designing

online algorithms.

5.1.1 Previous work

After almost three decades of extensive research counted in dozens of publications (see, e.g.,

a slightly dated survey by Koutsoupias [Kou09]), we are closer to understanding the nature

of the classic k-server problem. The competitive ratio achievable by deterministic algorithms

is between k [MMS90] and 2k − 1 [KP95] with k-competitive algorithms known for special

cases, such as uniform metrics [ST85], lines and trees [CKPV91, CL91], or metrics of k + 1

points [MMS90]. Less is known about competitive ratios for randomized algorithms: the best

known lower bound holding for an arbitrary metric space is Ω(log k/ log log k) [BLMN03] and

the currently best upper bound of O(log6 k) has been recently obtained in a breakthrough

result [BCL+
18, Lee18].

In comparison, little is known about the generalized k-server problem. In particular,

algorithms attaining competitive ratios that are functions of k exist only in a few special cases.

The case of k = 2 has been solved by Sitters and Stougie [SS06, Sit14], who gave constant

competitive algorithms for this setting. Results for k ≥ 3 are known only for simpler metric

spaces, as described below.

A uniform metric case describes a scenario where all metrics Mi are uniform with pairwise

distances between different points equal to 1. For this case, Bansal et al. [BEKN18] recently

presented an O(k · 2k)-competitive deterministic algorithm and an O(k3 · log k)-competitive

randomized one. The deterministic competitive ratio is at least 2k − 1 already when metrics Mi

have two points [KT04]. Furthermore, using a straightforward reduction to the metrical task

system (MTS) problem [BLS92], they show that the randomized competitive ratio is at least

Ω(k/ log k) [BEKN18].

A weighted uniform metric case describes a scenario where each metric Mi is uniform, but

they have different scales, i.e., the pairwise distances between points of Mi are equal to some

values wi > 0. For this setting, Bansal et al. [BEKN18] gave an 22O(k)
-competitive deterministic

algorithm extending an 22O(k)
-competitive algorithm for the weighted k-server problem in

uniform metrics [FR94]. (The latter problem corresponds to the case where all requests are of

the form (r, . . . , r).) This matches a lower bound of 22Ω(k)
[BEK17] (which also holds already for

the weighted k-server problem).

5.2. HYDRA GAME 63

5.1.2 Our results and chapter organization

In this chapter, we study the uniform metric case of the generalized k-server problem. We

give a randomized O(k2 · log k)-competitive algorithm improving over the O(k3 · log k) bound

by Bansal et al. [BEKN18].

To this end, we first define an elegant abstract online problem: a Hydra game played by

an online algorithm against an adversary on an unweighted tree. We present the problem along

with a randomized, low-cost online algorithm Herc in Section 5.2. We defer a formal definition

of the generalized k-server problem to Section 5.3.1. Later, in Section 5.3.2 and Section 5.3.3, we

briefly sketch the structural claims concerning the generalized k-server problem given by Bansal

et al. [BEKN18]. Using this structural information, in Section 5.3.4, we link the generalized

k-server problem to the Hydra game: we show that a (randomized) algorithm of total cost R

for the Hydra game on a specific tree (called factorial tree) implies a (randomized) (R + 1)-

competitive solution for the generalized k-server problem. This, along with the performance

guarantees of Herc given in Section 5.2, yields the desired competitiveness bound. We

remark that while the explicit definition of the Hydra game is new, the algorithm of Bansal et

al. [BEKN18] easily extends to its framework.

Finally, in Section 5.4, we give an explicit lower bound construction for the generalized

k-server problem, which does not use a reduction to the metrical task system problem, hereby

improving the bound from Ω(k/ log k) to Ω(k).

5.2 Hydra game

The Hydra game is played between an online algorithm and an adversary on a fixed

unweighted tree T, known to the algorithm in advance. The nodes of T have states which

change throughout the game: Each node can be either asleep, alive or dead. Initially, the root rT

is alive and all other nodes are asleep. At all times, the following invariant is preserved: all

ancestors of alive nodes are dead and all their descendants are asleep. In a single step, the

adversary picks a single alive node w, kills it (changes its state to dead) and makes all its

(asleep) children alive. Note that such adversarial move preserves the invariant above.

An algorithm must remain at some alive node (initially, it is at the root rT). If an algorithm

is at a node w that has just been killed, it has to move to any still alive node w′ of its choice.

For such movement it pays dist(w, w′), the length of the shortest path between w and w′ in the

tree T. The game ends when all nodes except one (due to the invariant, it has to be an alive leaf)

64 CHAPTER 5. GENERALIZED K-SERVER PROBLEM IN UNIFORM METRICS

are dead. Unlike many online problems, here our sole goal is to minimize the total (movement)

cost of an online algorithm (i.e., without comparing it to the cost of the offline optimum).

This game is not particularly interesting in the deterministic setting: As an adversary can

always kill the node where a deterministic algorithm resides, the algorithm has to visit all but

one nodes of tree T, thus paying Ω(|T|). On the other hand, a trivial DFS traversal of tree T

has the cost of O(|T|). Therefore, we focus on randomized algorithms and assume that the

adversary is oblivious: it knows an online algorithm, but not the random choices made by it

thus far.

5.2.1 Randomized algorithm definition

It is convenient to describe our randomized algorithm Herc as maintaining a probability

distribution η over set of nodes, where for any node u, η(u) denotes the probability that Herc

is at u. We require that η(u) = 0 for any non-alive node u. Whenever Herc decreases the

probability at a given node u by p and increases it at another node w by the same amount,

we charge cost p · dist(u, w) to Herc. By a straightforward argument, one can convert such

description into a more standard, “behavioral” one, which describes randomized actions

conditioned on the current state of an algorithm, and show that the costs of both descriptions

coincide.

Lemma 5.1. Let η be a probability distribution describing the position of Herc in the tree. Fix two tree

nodes, u and w. Suppose η′ is a probability distribution obtained from η by decreasing η(u) by p and

increasing η(w) by p. Then, Herc can change its random position, so that it will be described by η′,

and the expected cost of such change is p · dist(u, w).

Proof. We define Herc’s action as follows: if Herc is at node u, then with probability p/η(u)

it moves to node w. If Herc is at some other node it does not change its position.

We observe that the new distribution of Herc is exactly η′. Indeed, the probability of being

at node u decreases by η(u) · p/η(u) = p, while the probability of being at node w increases

by the same amount. The probabilities for all nodes different than u or w remain unchanged.

Furthermore, the probability that Herc moves is η(u) · (p/η(u)) = p and the traveled

distance is dist(u, w). The expected cost of the move is then p · dist(u, w), as desired.

To define Herc, we introduce the notion of nodes’ ranks. At any time during the game, for

any node u from tree T, rank(u) denotes the number of non-dead (i.e., alive or asleep) leaves

in the subtree rooted at u. As Herc knows tree T in advance, it knows node ranks as well.

5.2. HYDRA GAME 65

Algorithm Herc maintains η that is distributed over all alive nodes proportionally to their

ranks. As all ancestors of an alive node are dead and all its descendants are asleep, we have

η(u) = rank(u)/rank(rT) if u is alive and η(u) = 0 otherwise. In particular, at the beginning η

is 1 at the root and 0 everywhere else.

While this already defines the algorithm, we still discuss its behavior when an alive node u is

killed by the adversary. By Herc definition, we can think of the new probability distribution η′

as obtained from η in the following way. First, Herc sets η′(u) = 0. Next, the probability

distribution at other nodes is modified as follows.

Case 1. Node u is not a leaf. Herc distributes the probability of u among all (now alive)

children of u proportionally to their ranks, i.e., sets η′(w) = (rank(w)/rank(u)) · η(u) for

each child w of u.

Case 2. Node u is a leaf. Note that there were some other non-dead leaves, as otherwise the

game would have ended before this step, and therefore η(u) ≤ 1/2. Herc distributes η(u)

among all other nodes, scaling the probabilities of the remaining nodes up by a factor of

1/(1− η(u)). That is, it sets η′(w) = η(w)/(1− η(u)) for any node w.

Note that in either case, η′ is a valid probability distribution, i.e., all probabilities are

non-negative and sum to 1. Moreover, η′ is distributed over alive nodes proportionally to their

new ranks, and is equal to zero at non-alive nodes.

Observation 5.1. At any time, the probability of an alive leaf u is exactly η(u) = 1/rank(rT).

5.2.2 Analysis

For the analysis, we need a few more definitions. We denote the height and the number

of the leaves of tree T by hT and LT, respectively. Let level(u) denote the height of the subtree

rooted at u, where leaves are at level 0. Note that hT = level(rT).

To bound the cost of Herc, we define a potential Φ, which is a function of the current state

of all nodes of T and the current probability distribution η of Herc. We show that Φ is initially

O(hT · (1 + log LT)), is always non-negative, and the cost of each Herc’s action can be covered

by the decrease of Φ. This will show that the total cost of Herc is at most the initial value of Φ,

i.e., O(hT · (1 + log LT)).

Recall that η(w) = 0 for any non-alive node w and that rank(u) is the number of non-dead

leaves in the subtree rooted at u. Specifically, rank(rT) is the total number of non-dead leaves

66 CHAPTER 5. GENERALIZED K-SERVER PROBLEM IN UNIFORM METRICS

in T. The potential is defined as

Φ = 4 · hT · H(rank(rT)) + ∑
w∈T

η(w) · level(w) , (5.1)

where H(n) = ∑n
i=1 1/i is the n-th harmonic number.

Lemma 5.2. At any time, Φ = O(hT · (1 + log LT)).

Proof. Since rank(rT) ≤ LT at all times, the first summand of Φ is O(hT · log LT). The second

summand of Φ is a convex combination of node levels, which range from 0 to hT, and is thus

bounded by hT.

Lemma 5.3. Fix any step in which an adversary kills a node u and in result Herc changes the

probability distribution from η to η′. Let ∆Herc be the cost incurred in this step by Herc and let ∆Φ

be the resulting change in the potential Φ. Then, ∆Φ ≤ −∆Herc.

Proof. We denote the ranks before and after the adversarial event by rank and rank′, respectively.

We consider two cases depending on the type of u.

Case 1. The killed node u is an internal node. In this case, ∆Herc = η(u) as Herc simply

moves the total probability of η(u) along a distance of one (from u to its children). As

rank′(rT) = rank(rT), the first summand of Φ remains unchanged. Let C(u) be the set of

children of u. Then,

∆Φ = ∑
w∈T

(η′(w)− η(w)) · level(w) = −η(u) · level(u) + ∑
w∈C(u)

η′(w) · level(w)

≤ −η(u) · level(u) + ∑
w∈C(u)

η′(w) · (level(u)− 1)

= −η(u) · level(u) + η(u) · (level(u)− 1) = −∆Herc ,

where the inequality holds as level of a node is smaller than the level of its parent and

the penultimate equality follows as the whole probability mass at u is distributed to its

children.

Case 2. The killed node u is a leaf. It is not the last alive node, as in such case the game

would have ended before, i.e., it holds that rank(rT) ≥ 2. Herc moves the probability

of η(u) = 1/rank(rT) (cf. Observation 5.1) along a distance of at most 2 · hT, and thus

∆Herc ≤ 2 · hT/rank(rT).

5.3. IMPROVED ALGORITHM FOR GENERALIZED K-SERVER PROBLEM 67

Furthermore, for any w 6= u, η′(w) = η(w)/(1− η(u)). Using η(u) = 1/rank(rT), we

infer that the probability at a node w 6= u increases by

η′(w)− η(w) =

(
1

1− η(u)
− 1
)
· η(w) =

η(u)
1− η(u)

· η(w)

=
1

rank(rT)− 1
· η(w) ≤ 2

rank(rT)
· η(w) , (5.2)

where the last inequality follows as rank(rT) ≥ 2.

Using (5.2) and the relation rank′(rT) = rank(rT)− 1 (the number of non-dead leaves

decreases by 1), we compute the change of the potential:

∆Φ = 4 · hT ·
(

H(rank′(rT))− H(rank(rT))
)
+ ∑

w∈T
(η′(w)− η(w)) · level(w)

= − 4 · hT

rank(rT)
+ (η′(u)− η(u)) · level(u) + ∑

w 6=u
(η′(w)− η(w)) · level(w)

≤ − 4 · hT

rank(rT)
+ ∑

w 6=u

2
rank(rT)

· η(w) · hT ≤ −
2 · hT

rank(rT)
≤ −∆Herc .

In the first inequality, we used that level(u) = 0 and level(w) ≤ hT for any w.

Summing up, we showed that ∆Φ ≤ −∆Herc in both cases.

Theorem 5.1. For the Hydra game played on any tree T of height hT and LT leaves, the total cost of

Herc is at most O(hT · (1 + log LT)).

Proof. Let ΦB denote the initial value of Φ. By non-negativity of Φ and Lemma 5.3, it holds

that the total cost of Herc is at most ΦB. The latter amount is at most O(hT · (1 + log LT)) by

Lemma 5.2.

Although Herc and Theorem 5.1 may seem simple, when applied to appropriate trees, they

yield improved bounds for the generalized k-server problem in uniform metrics, as shown in

the next section.

5.3 Improved algorithm for generalized k-server problem

In this part, we show how any solution for the Hydra game on a specific tree (defined later)

implies a solution to the generalized k-server problem in uniform metrics. This will yield an

O(k2 log k)-competitive randomized algorithm for the generalized k-server problem, improving

the previous bound of O(k3 · log k) [BEKN18]. We note that this reduction is implicit in the

paper of Bansal et al. [BEKN18], so our contribution is in formalizing the Hydra game and

solving it more efficiently.

68 CHAPTER 5. GENERALIZED K-SERVER PROBLEM IN UNIFORM METRICS

5.3.1 Preliminaries

The generalized k-server problem in uniform metrics is formally defined as follows. The

offline part of the input comprises k uniform metric spaces M1, . . . , Mk. The metric Mi has

ni ≥ 2 points, the distance between each pair of its points is 1. There are k servers denoted

s1, . . . , sk, the server si starts at some fixed point in Mi and always remains at some point of Mi.

The online part of the input is a sequence of requests, each request being a k-tuple

(r1, . . . , rk) ∈ ∏k
i=1 Mi. To service a request, an algorithm needs to move its servers, so that at

least one server si ends at the request position ri. Only after the current request is serviced, an

online algorithm is given the next one. The cost of an algorithm is the total distance traveled

by all its k servers.

5.3.2 Phase-based approach

We start by showing how to split the sequence of requests into phases. To this end, we need

a few more definitions. A (server) configuration is a k-tuple c = (c1, . . . , ck) ∈ ∏k
i=1 Mi, denoting

positions of respective servers. For a request r = (r1, . . . , rk) ∈ ∏k
i=1 Mi, we define the set of

compatible configurations comp(r) = {(c1, . . . , ck) : ∃i ci = ri}, i.e., the set of all configurations

that can service the request r without moving a server. Other configurations we call incompatible

with r.

An input is split into phases, with the first phase starting with the beginning of an input.

The phase division process described below is constructed to ensure that Opt pays at least 1

in any phase, perhaps except the last one. At the beginning of a phase, all configurations

are phase-feasible. Within a phase, upon a request r, all configurations incompatible with r

become phase-infeasible. The phase ends once all configurations are phase-infeasible; if this is

not the end of the input, the next phase starts immediately, i.e., all configurations are restored

to the phase-feasible state before the next request. Note that the description above is merely

a way of splitting an input into phases and marking configurations as phase-feasible and

phase-infeasible. The actual description of an online algorithm will be given later.

Fix any finished phase and any configuration c and consider an algorithm that starts the

phase with its servers at configuration c. When configuration c becomes phase-infeasible, such

algorithm is forced to move and pay at least 1. As each configuration eventually becomes

phase-infeasible in a finished phase, any algorithm (even Opt) must pay at least 1 in any

finished phase. Hence, if the cost of a phase-based algorithm for servicing requests of a single

phase can be bounded by f (k), the competitive ratio of this algorithm is then at most f (k).

5.3. IMPROVED ALGORITHM FOR GENERALIZED K-SERVER PROBLEM 69

5.3.3 Configuration spaces

Phase-based algorithms that we construct will not only track the set of phase-feasible

configurations, but they will also group these configurations in certain sets, called configuration

spaces.

To this end, we introduce a special wildcard character ?. Following [BEKN18], for any k-

tuple q = (q1, . . . , qk) ∈ ∏k
i=1(Mi ∪ {?}), we define a (configuration) space S[q] = {(c1, . . . , ck) ∈

∏k
i=1 Mi : ∀i ci = qi ∨ qi = ?}. A coordinate with qi = ? is called free for the configuration space

S[q]. That is, S[q] contains all configurations that agree with q on all non-free coordinates.

The number of free coordinates in q defines the dimension of S[q] denoted dim(S[q]).

Observe that the k-dimensional space S[(?, . . . , ?)] contains all configurations. If tuple q has

no ? at any position, then S[q] is 0-dimensional and contains only (configuration) q. The

following lemma, proven by Bansal et al. [BEKN18], follows immediately from the definition of

configuration spaces.

Lemma 5.4 (Lemma 3.1 of [BEKN18]). Let S[q] be a d-dimensional configuration space (for some

d ≥ 0) whose all configurations are phase-feasible. Fix a request r. If there exists a configuration in

S[q] that is not compatible with r, then there exist d (not necessarily disjoint) subspaces S[q1], . . . , S[qd],

each of dimension d− 1, such that
⋃

i S[qi] = S[q] ∩ comp(r). Furthermore, for all i, the k-tuples qi

and q differ exactly at one position.

Using the lemma above, we may describe a way for an online algorithm to keep track of

all phase-feasible configurations. To this end, it maintains a set A of (not necessarily disjoint)

configuration spaces, such that their union is exactly the set of all phase-feasible configurations.

We call spaces from A alive.

At the beginning, A = {S[(?, . . . , ?)]}. Assume now that a request r makes some config-

urations from a d-dimensional space S[q] ∈ A phase-infeasible. (A request may affect many

spaces from A; we apply the described operations to each of them sequentially in an arbitrary

order.) In such case, S[q] stops to be alive, it is removed from A and till the end of the phase

it will be called dead. Next, we apply Lemma 5.4 to S[q], obtaining d configuration spaces

S[q1], . . . , S[qd], such that their union is S[q] ∩ comp(r), i.e., contains all those configurations

from S[q] that remain phase-feasible. We make all spaces S[q1], . . . , S[qd] alive and we insert

them into A. (Note that when d = 0, set S[q] is removed from A, but no space is added

to it.) This way we ensure that the union of spaces from A remains equal to the set of all

phase-feasible configurations. Note that when a phase ends, A becomes empty. We emphasize

70 CHAPTER 5. GENERALIZED K-SERVER PROBLEM IN UNIFORM METRICS

that the evolution of set A within a phase depends only on the sequence of requests and not

on the particular behavior of an online algorithm.

5.3.4 Factorial trees: from Hydra game to generalized k-server

Given the framework above, an online algorithm may keep track of the set of alive spaces A,

and at all times try to be in a configuration from some alive space. If this space becomes

dead, an algorithm changes its configuration to any configuration from some other alive space

from A.

The crux is to choose an appropriate next alive space. To this end, our algorithm for the

generalized k-server problem will internally run an instance of the Hydra game (a new instance

for each phase) on a special tree, and maintain a mapping from alive and dead spaces to alive

and dead nodes in the tree. Moreover, spaces that are created during the algorithm runtime, as

described in Section 5.3.3, have to be dynamically mapped to tree nodes that were so far asleep.

In our reduction, we use a k-factorial tree. It has height k (the root is on level k and leaves

on level 0). Any node on level d has exactly d children, i.e., the subtree rooted at a d-level

node has d! leaves, hence the tree name. On the k-factorial tree, the total cost of Herc is

O(k · (1 + log k!)) = O(k2 · log k). We now show that this implies an improved algorithm for

the generalized k-server problem.

Theorem 5.2. If there exists a (randomized) online algorithm H for the Hydra game on the k-factorial

tree of total (expected) cost R, then there exists a (randomized) (R + 1)-competitive online algorithm G

for the generalized k-server problem in uniform metrics.

Proof. Let I be an input for the generalized k-server problem in uniform metric spaces.

G splits I into phases as described in Section 5.3.2 and, in each phase, it tracks the phase-

feasible nodes using set A of alive spaces as described in Section 5.3.3. For each phase, G runs

a new instance IH of the Hydra game on a k-factorial tree T, translates requests from I to

adversarial actions in IH , and reads the answers of H executed on IH . At all times, G maintains

a (bijective) mapping from alive (respectively, dead) d-dimensional configuration spaces to

alive (respectively, dead) nodes on the d-th level of the tree T. In particular, at the beginning,

the only alive space is the k-dimensional space S[(?, . . . , ?)], which corresponds to the tree root

(on level k). The configuration of G will always be an element of the space corresponding to

the tree node containing H. More precisely, within each phase, a request r is processed in the

following way by G.

5.3. IMPROVED ALGORITHM FOR GENERALIZED K-SERVER PROBLEM 71

• Suppose that request r does not make any configuration phase-infeasible. In this case,

G services r from its current configuration and no changes are made to A. Also no

adversarial actions are executed in the Hydra game.

• Suppose that request r makes some (but not all) configurations phase-infeasible. We

assume that this kills only one d-dimensional configuration space S[q]. (If r causes

multiple configuration spaces to become dead, G processes each such killing event

separately, in an arbitrary order.)

By the description given in Section 5.3.3, S[q] is then removed from A and d new (d− 1)-

dimensional spaces S[q1], . . . , S[qd] are added to A. G executes appropriate adversarial

actions in the Hydra game: a node v corresponding to S[q] is killed and its d children on

level d− 1 change state from asleep to alive. G modifies the mapping to track the change

of A: (new and now alive) spaces S[q1], . . . , S[qd] become mapped to (formerly asleep

and now alive) d children of v. Afterwards, G observes the answer of algorithm H on

the factorial tree and replays it. Suppose H moves from (now dead) node v to an alive

node v′, whose corresponding space is S[q′] ∈ A. In this case, G changes its configuration

to the closest configuration (requiring minimal number of server moves) from S[q′]. It

remains to relate its cost to the cost of H. By Lemma 5.4 (applied to spaces corresponding

to all nodes on the tree path from v to v′), the corresponding k-tuples q, q′ differ on at

most dist(v, v′) positions. Therefore, adjusting the configuration of G, so that it becomes

an element of S[q′], requires at most dist(v, v′) server moves, which is exactly the cost of H.

Finally, note that when G processes all killing events, it ends in a configuration of an alive

space, and hence it can service the request r from its new configuration.

• Suppose that request r makes all remaining configurations phase-infeasible. In such case,

G moves an arbitrary server to service this request, which incurs a cost of 1. In this case,

the current phase ends, a new one begins, and G initializes a new instance of the Hydra

game.

Let f ≥ 1 be the number of all phases for input I (the last one may be not finished). The cost

of Opt in a single finished phase is at least 1. By the reasoning above, the (expected) cost of G in

a single phase is at most R + 1. Therefore, E[G(I)] ≤ (R + 1) · f ≤ (R + 1) ·Opt(I) + (R + 1),

which completes the proof.

Using our algorithm Herc for the Hydra game along with the reduction given by Theo-

rem 5.2 immediately implies the following result.

72 CHAPTER 5. GENERALIZED K-SERVER PROBLEM IN UNIFORM METRICS

Corollary 5.1. There exists a randomized O(k2 · log k)-competitive online algorithm for the generalized

k-server problem in uniform metrics.

5.4 Lower bound

Next, we show that that competitive ratio of any (even randomized) online algorithm for

the generalized k-server problem in uniform metrics is at least Ω(k), as long as each metric

space Mi contains at least two points. For each Mi, we choose two distinct points, the initial

position of the i-th server, which we denote 0 and any other point, which we denote 1. The

adversary is going to issue only requests satisfying ri ∈ {0, 1} for all i, hence without loss of

generality any algorithm will restrict its server’s position in each Mi to 0 and 1. (To see this,

assume without loss of generality that the algorithm is lazy, i.e., it is only allowed to move

when a request is not covered by any of its server, and is then allowed only to move a single

server to cover that request.) For this reason, from now on we assume that Mi = {0, 1} for all i,

ignoring superfluous points of the metrics.

The configuration of any algorithm can be then encoded using a binary word of length k.

It is convenient to view all these 2k words (configurations) as nodes of the k-dimensional

hypercube: two words are connected by a hypercube edge if they differ at exactly one position.

Observe that a cost of changing configuration c to c′, denoted dist(c, c′) is exactly the distance

between c and c′ in the hypercube, equal to the number of positions on which the corresponding

binary strings differ.

In our construction, we compare the cost of an online algorithm to the cost of an algorithm

provided by the adversary. Since Opt’s cost can be only lower than the latter, such approach

yields a lower bound on the performance of the online algorithm.

For each word w, there is exactly one word at distance k, which we call its antipode

and denote w̄. Clearly, w̄i = 1− wi for all i. Whenever we say that an adversary penalizes

configuration c, it issues a request at c̄. An algorithm that has servers at configuration c needs

to move at least one of them. On the other hand, any algorithm with servers at configuration

c′ 6= c need not move its servers; this property will be heavily used by an adversary’s algorithm.

5.4.1 A warm-up: deterministic algorithms

To illustrate our general framework, we start with a description of an Ω(2k/k) lower bound

that holds for any deterministic algorithm Det [BEKN18]. (A more refined analysis yields

5.4. LOWER BOUND 73

a better lower bound of 2k − 1 [KT04].) The adversarial strategy consists of a sequence of

independent identical phases. Whenever Det is in some configuration, the adversary penalizes

this configuration. The phase ends when 2k − 1 different configurations have been penalized.

This means that Det was forced to move at least 2k − 1 times, at a total cost of at least 2k − 1.

In the same phase, the adversary’s algorithm makes only a single move (of cost at most k) at

the very beginning of the phase: it moves to the only configuration that is not going to be

penalized in the current phase. This shows that the Det-to-Opt ratio in each phase is at least

(2k − 1)/k.

5.4.2 Extension to randomized algorithms

Adopting the idea above to a randomized algorithm Rand is not straightforward. Again,

we focus on a single phase and the adversary wants to leave (at least) one configuration

non-penalized in this phase. However, now the adversary only knows Rand’s probability

distribution µ over configurations and not its actual configuration. (At any time, for any

configuration c, µ(c) is the probability that Rand’s configuration is equal to c.) We focus on

a greedy adversarial strategy that always penalizes the configuration with maximum probability.

However, arguing that Rand incurs a significant cost is not as easy as for Det.

First, the support of µ can also include configurations that have been already penalized by

the adversary in the current phase. This is but a nuisance, easily overcome by penalizing such

configurations repeatedly if Rand keeps using them, until their probability becomes negligible.

Therefore, in this informal discussion, we assume that once a configuration c is penalized in

a given phase, µ(c) remains equal to zero.

Second, a straightforward analysis of the greedy adversarial strategy fails to give a non-

trivial lower bound. Assume that i ∈ {0, . . . , 2k− 2} configurations have already been penalized

in a given phase, and the support of µ contains the remaining 2k − i configurations. The

maximum probability assigned to one of these configurations is at least 1/(2k − i). When such

configuration is penalized, Rand needs to move at least one server with probability at least

1/(2k − i). With such bounds, we would then prove that the algorithm’s expected cost is at

least ∑2k−2
i=0 1/(2k − i) = Ω(log 2k) = Ω(k). Since we bounded the adversary’s cost per phase

by k, this gives only a constant lower bound.

What we failed to account is that the actual distance traveled by Rand in a single step

is either larger than 1 or Rand would not be able to maintain a uniform distribution over

74 CHAPTER 5. GENERALIZED K-SERVER PROBLEM IN UNIFORM METRICS

non-penalized configurations. However, actually exploiting this property seems quite complex,

and therefore we modify the adversarial strategy instead.

The crux of our actual construction is choosing a subset Q of the configurations, such that

Q is sufficiently large (we still have log(|Q|) = Ω(k)), but the minimum distance between any

two points of Q is Ω(k). Initially, the adversary forces the support of µ to be contained in Q.

Afterwards, the adversarial strategy is almost as described above, but reduced to set Q only.

This way, in each step the support of µ is a set S ⊆ Q, and the adversary forces Rand to move

with probability at least 1/|S| over a distance at least Ω(k), which is the extra Θ(k) factor. We

begin by proving the existence of such a set Q for sufficiently large k. The proof is standard

(see, e.g., Chapter 17 of [Juk11]); we give it below for completeness.

Lemma 5.5. For any k ≥ 16, there exists a set Q ⊆ {0, 1}k of binary words of length k, satisfying the

following two properties:

size property: |Q| ≥ 2k/2/k,

distance property: dist(v, w) ≥ k/16 for any v, w ∈ Q.

Proof. Let ` = bk/16c ≥ k/32. For any word q, we define its `-neighborhood B`(q) = {w :

dist(q, w) ≤ `}.

We construct set Q greedily. We maintain set Q and set Γ(Q) =
⋃

q∈Q B`(q). We start

with Q = ∅ (and thus with Γ(Q) = ∅). In each step, we extend Q with an arbitrary

word w ∈ {0, 1}k \ Γ(Q) and update Γ(Q) accordingly. We proceed until set Γ(Q) contains all

possible length-k words. Clearly, the resulting set Q satisfies the distance property.

It remains to show that |Q| ≥ 2k/2/k. For a word q, the size of B`(q) is

|B`(q)| =
bk/16c

∑
i=0

(
k
i

)
< k ·

(
k

bk/16c

)
≤ k ·

(
k · e
bk/16c

)bk/16c

≤ k ·
(

k · e
k/32

)k/16

= k ·
(
(32 · e)1/8

)k/2
< k · 2k/2 .

That is, in a single step, Γ(Q) increases by at most k · 2k/2 elements. Therefore, the process

continues for at least 2k/(k · 2k/2) = 2k/2/k steps, and thus the size of Q is at least 2k/2/k.

Theorem 5.3. The competitive ratio of every (randomized) online algorithm solving the generalized

k-server problem in uniform metrics is at least Ω(k).

Proof. In the following we assume that k ≥ 16, otherwise the theorem follows trivially. We fix

any randomized online algorithm Rand. The lower bound strategy consists of a sequence of

5.4. LOWER BOUND 75

independent phases. Requests of each phase can be (optimally) serviced with cost at most k and

we show that Rand’s expected cost for a single phase is Ω(k2), i.e., the ratio between these costs

is Ω(k). As the adversary may present an arbitrary number of phases to the algorithm, this

shows that the competitive ratio of Rand is Ω(k), i.e., by making the cost of Rand arbitrarily

high, the additive constant in the definition of the competitive ratio (cf. Section 5.3.1) becomes

negligible.

As in our informal introduction, µ(c) denotes the probability that Rand has its servers

in configuration c (at time specified in the context). We extend the notion µ to sets, i.e.,

µ(X) = ∑c∈X µ(x) where X is a set of configurations. We denote the complement of X (to

∏k
i=1 Mi) by XC. We use ε = 2−(2k+2) throughout the proof.

To make the description concise, we define an auxiliary routine Confine(X) for the

adversary (for some configuration set X). In this routine, the adversary repeatedly checks

whether there exists a configuration c 6∈ X, such that µ(x) > ε. In such case, it penalizes c;

if no such configuration exists, the routine terminates. We may assume that the procedure

always terminates after finite number of steps, as otherwise Rand’s competitive ratio would be

unbounded. (Rand pays at least ε in each step of the routine while an adversary’s algorithm

may move its servers to any configuration from set X, and from that time service all requests

of Confine(X) with no cost.)

The adversarial strategy for a single phase is as follows. First, it constructs Q1 as the configu-

ration set fulfilling the properties of Lemma 5.5; let m denote its cardinality. The phase consists

then of m executions of Confine routine: Confine(Q1), Confine(Q2), . . . , Confine(Qm). For

i ∈ {2, . . . , m}, set Qi is defined in the following way. The adversary observes Rand’s dis-

tribution µ right after routine Confine(Qi−1) terminates; at this point this distribution is

denoted µi−1. Then, the adversary picks configuration ci−1 to be the element of Qi−1 that

maximizes the probability µi−1, and sets Qi = Qi−1 \ {ci−1}.

We begin by describing the way that the adversary services the requests. Observe that

set Qm contains a single configuration, henceforth denoted c∗. The configuration c∗ is contained

in all sets Q1, . . . , Qm, and thus c∗ is never penalized in the current phase. Hence, by moving

to c∗ at the beginning of the phase, which costs at most k, and remaining there till the phase

ends, the adversary’s algorithm services all phase requests at no further cost.

It remains to lower-bound the cost of Rand. Confine(Q1) may incur no cost; its sole goal

is to confine the support of µ to Q1. Now, we fix any i ∈ {2, . . . , m} and estimate the cost

incurred by Confine(Qi). Recall that the probability distribution right before Confine(Qi)

76 CHAPTER 5. GENERALIZED K-SERVER PROBLEM IN UNIFORM METRICS

starts (and right after Confine(Qi−1) terminates) is denoted µi−1 and the distribution right

after Confine(Qi) terminates is denoted µi.

During Confine(Qi) a probability mass µi−1(ci−1), is moved from ci−1 to nodes of set Qi

(recall that Qi] {ci−1} = Qi−1). Some negligible amounts (at most µi(QC
i)) of this probability

may however remain outside of Qi after Confine(Qi) terminates. That is, Rand moves at least

the probability mass of µi−1(ci−1)− µi(QC
i) from configuration ci−1 to configurations from Qi

(i.e., along a distance of at least dist(ci−1, Qi)), Therefore, its expected cost due to Confine(Qi)

is at least (µi−1(ci−1)− µi(QC
i)) · dist(ci−1, Qi).

First, using the properties of Confine(Qi−1) and the definition of ci−1, we obtain

µi−1(ci−1) ≥
µi−1(Qi−1)

|Qi−1|
=

1− µi−1(QC
i−1)

|Qi−1|
≥

1− |QC
i−1| · ε

|Qi−1|
>

1− 2−(k+2)

|Qi−1|
. (5.3)

Second, using the properties of Confine(Qi) yields

µi(QC
i) ≤ |QC

i | · ε < 2−(k+2) =
2−2

2k <
2−2

|Qi−1|
. (5.4)

Using (5.3) and (5.4), we bound the expected cost of Rand due to routine Confine(Qi) as

E[Rand(Confine(Qi))] ≥
(

µi−1(ci−1)− µi(QC
i)
)
· dist(ci−1, Qi)

≥
(

1− 2−(k+2)

|Qi|
− 2−2

|Qi|

)
· k

16
≥ 1

2 · |Qi|
· k

16

= k/(32 · (m− i + 1)) (5.5)

The second inequality above follows as all configurations from {ci−1}] Qi are distinct ele-

ments of Q1, and hence their mutual distance is at least k/16 by the distance property of Q1

(cf. Lemma 5.5). By summing (5.5) over i ∈ {2, . . . , m}, we obtain that the total cost of Rand in

a single phase is E[Rand] ≥ ∑m
i=2 E[Rand(Confine(Qi))] ≥ k

32 ·∑
m
i=2

1
m−i+1 = Ω(k · log m) =

Ω(k2). The last equality holds as m ≥ 2k/2/k by the size property of Q1. (cf. Lemma 5.5).

5.5 Final remarks

In Chapter 5, we presented an abstract Hydra game whose solution we applied to create

an algorithm for the generalized k-server problem. Any improvement of our Herc strategy for

the Hydra game would yield an improvement for the generalized k-server problem. However,

we may show that on a wide class of trees (that includes factorial trees used in our reduction),

Herc is optimal up to a constant factor. Thus, further improving our upper bound of O(k2 log k)

for the generalized k-server problem will require another approach.

5.5. FINAL REMARKS 77

A lower bound for the cost of any randomized strategy for the Hydra game is essentially the

same as our single-phase construction from Section 5.4.2 for the generalized k-server problem.

That is, the adversary fixes a subset Q of tree leaves, makes only nodes of Q alive (this forces

the algorithm to be inside set Q), and then iteratively kills nodes of Q where the algorithm is

most likely to be. As in the proof from Section 5.4.2, such adversarial strategy incurs the cost

of Ω(mindist(Q) · log |Q|), where mindist(Q) = minu 6=v∈Q dist(u, v).

The construction of appropriate Q for a tree T of depth k = hT (be either the k-factorial tree

or the complete k-ary tree) is as follows. Let Z be the set of all nodes of T at level bk/2c; for

such trees, log |Z| = Ω(log LT). Let Q consist of |Z| leaves of the tree, one per node of Z chosen

arbitrarily from its subtree. Then, mindist(Q) = Ω(hT) and log |Q| = Ω(log LT), and thus the

resulting lower bound Ω(hT · log LT) on the cost asymptotically matches the performance of

Herc from Theorem 5.1.

78 CHAPTER 5. GENERALIZED K-SERVER PROBLEM IN UNIFORM METRICS

Chapter 6

Afterword

In this chapter, we discuss possible further research directions on the problems studied in

this dissertation.

Non-metric facility location. In Chapter 2, we presented a deterministic solution to the

non-metric facility location problem, whose performance nearly matches that of the best

randomized one. By clustering facilities, we encoded dependencies between facilities and

clients, which allowed us later to apply the rounding scheme to facilities only, neglecting the

actual active clients. It would be however interesting and useful to have an online deterministic

rounding routine able to handle such dependencies internally (e.g., by creating a pessimistic

estimator that can be computed and handled in an online manner), as it is the case for the set

cover problem or throughput-competitive virtual circuit routing [BN09].

A natural research direction would be extending our distance clustering techniques to other

network design problems for which only randomized algorithms existed so far, e.g., online

multicast problems on trees [AAA+
06], online group Steiner problem on trees [AAA+

06], or

variants of the facility location problem that are used as building blocks for solutions to other

node-weighted Steiner problems [HLP14, HLP17]. (For these problems there are no known

direct reductions to the set cover problem).

Matching with delays. In Chapter 3, we showed a deterministic algorithm Alg for the

problem of matching with delays whose competitive ratio is O(mlog2 5.5) for inputs, with

2m requested elements. This result was improved by Bienkowski et al. [BKLS18], who pre-

sented a O(m)-competitive dual-fitting algorithm, and afterwards by Azar and Fanani [AF18],

whose greedy algorithm attains competitive ratio of O(mlog2 1.5). The last value (as we ar-

79

80 CHAPTER 6. AFTERWORD

gued in Section 3.4) is a lower bound on a competitive ratio of a class of natural greedy

algorithms. The currently best lower bound (holding even for randomized solutions) is

Ω(log n/ log log n) [AAC+
17], where n is the size of the input graph.

Steiner tree leasing. In Chapter 4, we showed that the technique of analyzing greedy algo-

rithms using HSTs can be also applied to the leasing variant of the online Steiner tree problem.

A natural research direction is to employ it for other leasing variants of graph problems, such

as Steiner forest or facility location.

Closing the gap between the current upper and lower bounds for the deterministic algo-

rithms solving the Steiner tree leasing problem (O(L · log k) and Ω(L + log k), respectively, for

instances with k requested elements and L different lease types) is an intriguing open problem.

In particular, it seems that improving the competitive ratio requires a very careful interplay

between path-choosing and lease-upgrade routines. We remark that analogous gaps exist also

for randomized algorithms for the Steiner tree leasing problem [Mey05] and for a leasing

variant of the facility location problem [NW13].

Generalized k-server problem. In Chapter 5, we presented an abstract Hydra game whose

solution we applied to create an algorithm for the generalized k-server problem. Since our

algorithm Herc for Hydra game is optimal up to a constant factor, further improving our upper

bound of O(k2 log k) for the generalized k-server problem is likely to require a completely

different approach. In our phase-based analysis, we used a simple lower bound on the cost of

the optimal solution. A crucial for improving the competitive ratio for the generalized k-server

problem is a better understanding of the optimal schedule. In particular, it would be useful to

characterize situations when it is forced to move more than one of its servers.

A good starting point for further research is the generalized k-server problem problem

with each metric space containing exactly 2 points. (This variant is equivalent to metrical

task system on the k-dimensional hypercube.) It is not difficult to construct a phase-based

O(k2)-competitive algorithm for such inputs and the lower bound of Ω(k) on competitiveness

of any algorithm holds.

Finally, it would be particularly interesting to apply projection techniques developed

recently for k-server [BCL+
18, Lee18] and metrical task systems [BCLL19] to the generalized

k-server problem problem.

Bibliography

[AA92] Noga Alon and Yossi Azar. On-line Steiner trees in the Euclidean plane. In Proc.

8th ACM Symp. on Computational Geometry (SoCG), pages 337–343, 1992.

[AA97] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network design. In Proc. 38th IEEE

Symp. on Foundations of Computer Science (FOCS), pages 542–547, 1997.

[AAA+
06] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. A

general approach to online network optimization problems. ACM Trans. Algorithms,

2(4):640–660, 2006.

[AAA+
09] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The

online set cover problem. SIAM Journal on Computing, 39(2):361–370, 2009.

[AAB04] Baruch Awerbuch, Yossi Azar, and Yair Bartal. On-line generalized Steiner problem.

Theoretical Computer Science, 324(2–3):313–324, 2004.

[AAC+
17] Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim

Kaplan, Rahul M. Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-cost

bipartite perfect matching with delays. In Proc. 20th Int. Workshop on Approximation

Algorithms for Combinatorial Optimization (APPROX), pages 1:1–1:20, 2017.

[AAP93] Baruch Awerbuch, Yossi Azar, and Serge A. Plotkin. Throughput-competitive

on-line routing. In Proc. 34th IEEE Symp. on Foundations of Computer Science (FOCS),

pages 32–40, 1993.

[AB05] Susanne Albers and Helge Bals. Dynamic TCP acknowledgment: Penalizing long

delays. SIAM Journal on Discrete Mathematics, 19(4):938–951, 2005.

[ABF93] Baruch Awerbuch, Yair Bartal, and Amos Fiat. Competitive distributed file allo-

cation. In Proc. 25th ACM Symp. on Theory of Computing (STOC), pages 164–173,

1993.

81

82 BIBLIOGRAPHY

[ABF98] Baruch Awerbuch, Yair Bartal, and Amos Fiat. Distributed paging for general

networks. Journal of Algorithms, 28(1):67–104, 1998.

[ABM16] Karen Aardal, Jaroslaw Byrka, and Mohammad Mahdian. Facility location. In

Encyclopedia of Algorithms, pages 717–724. Springer, 2016.

[ABN+
14] Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, and Michele

Scquizzato. A o(n)-competitive deterministic algorithm for online matching on a

line. In Proc. 12th Workshop on Approximation and Online Algorithms (WAOA), pages

11–22, 2014.

[ABUH04] Aris Anagnostopoulos, Russell Bent, Eli Upfal, and Pascal Van Hentenryck. A

simple and deterministic competitive algorithm for online facility location. Inf.

Comput., 194(2):175–202, 2004.

[ACER19] Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. An O(log

k)-competitive algorithm for generalized caching. ACM Transactions on Algorithms,

15(1):6:1–6:18, 2019.

[ACK17] Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Polylogarithmic bounds on the

competitiveness of min-cost perfect matching with delays. In Proc. 28th ACM-SIAM

Symp. on Discrete Algorithms (SODA), pages 1051–1061, 2017.

[ACKT20] Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover with

delay - clairvoyance is not required. In Proc. 28th European Symp. on Algorithms

(ESA), pages 8:1–8:21, 2020.

[AF18] Yossi Azar and Amit Jacob Fanani. Deterministic min-cost matching with delays.

In Proc. 16th Workshop on Approximation and Online Algorithms (WAOA), pages

21–35, 2018.

[AFG+
09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.

Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion

Stoica, and Matei Zaharia. Above the clouds: A Berkeley view of cloud computing.

Technical Report UCB/EECS-2009-28, EECS Department, University of California,

Berkeley, 2009.

[AG07] Barbara M. Anthony and Anupam Gupta. Infrastructure leasing problems. In

Proc. 12th Int. Conf. on Integer Programming and Combinatorial Optimization (IPCO),

pages 424–438, 2007.

BIBLIOGRAPHY 83

[AGGP17] Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with

delay. In Proc. 49th ACM Symp. on Theory of Computing (STOC), pages 551–563,

2017.

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update

method: a meta-algorithm and applications. Theory of Computing Systems, 8(1):121–

164, 2012.

[AJF18] Yossi Azar and Amit Jacob-Fanani. Deterministic min-cost matching with delays.

In Proc. 16th Workshop on Approximation and Online Algorithms (WAOA), 2018.

[AK98] Susanne Albers and Hisashi Koga. New on-line algorithms for the page replication

problem. Journal of Algorithms, 27(1):75–96, 1998.

[AKM+
15] Sebastian Abshoff, Peter Kling, Christine Markarian, Friedhelm

Meyer auf der Heide, and Peter Pietrzyk. Towards the price of leasing

online. Journal of Combinatorial Optimization, pages 1–20, 2015.

[AMM14] Sebastian Abshoff, Christine Markarian, and Friedhelm Meyer auf der Heide.

Randomized online algorithms for set cover leasing problems. In Proc. 8th Int.

Conf. on Combinatorial Optimization and Applications (COCOA), pages 25–34, 2014.

[Ang09] Spyros Angelopoulos. On the competitiveness of the online asymmetric and

Euclidean Steiner tree problems. In Proc. 7th Workshop on Approximation and Online

Algorithms (WAOA), pages 1–12, 2009.

[ASvZ13] Tetske Avontuur, Pieter Spronck, and Menno van Zaanen. Player skill modeling

in Starcraft II. In Proc. 9th AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, AIIDE-13, 2013.

[AT20] Yossi Azar and Noam Touitou. Beyond tree embeddings - a deterministic frame-

work for network design with deadlines or delay. In Proc. 61st IEEE Symp. on

Foundations of Computer Science (FOCS), pages 1368–1379, 2020.

[BA10] Jaroslaw Byrka and Karen Aardal. An optimal bifactor approximation algorithm

for the metric uncapacitated facility location problem. SIAM Journal on Computing,

39(6):2212–2231, 2010.

[Bar96] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic

applications. In Proc. 37th IEEE Symp. on Foundations of Computer Science (FOCS),

pages 184–193, 1996.

84 BIBLIOGRAPHY

[Bar98] Yair Bartal. On approximating arbitrary metrics by tree metrics. In Proc. 30th ACM

Symp. on Theory of Computing (STOC), pages 161–168, 1998.

[BBC+
13] Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Łukasz Jeż, Jiři Sgall, and

Grzegorz Stachowiak. Online control message aggregation in chain networks. In

Proc. 13th Algorithms and Data Structures Symposium (WADS), pages 133–145, 2013.

[BBGN14] Nikhil Bansal, Niv Buchbinder, Anupam Gupta, and Joseph Naor. A random-

ized O(log2 k)-competitive algorithm for metric bipartite matching. Algorithmica,

68(2):390–403, 2014.

[BBK+
94] Shai Ben-David, Allan Borodin, Richard M. Karp, Gabor Tardos, and Avi Wigder-

son. On the power of randomization in online algorithms. Algorithmica, 11(1):2–14,

1994.

[BBMN15] Nikhil Bansal, Niv Buchbinder, Aleksander Mądry, and Joseph Naor. A

polylogarithmic-competitive algorithm for the k-server problem. Journal of the

ACM, 62(5):40:1–40:49, 2015.

[BBN12] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Randomized competitive al-

gorithms for generalized caching. SIAM Journal on Computing, 41(2):391–414,

2012.

[BCL+
18] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander

Madry. k-server via multiscale entropic regularization. In Proc. 50th ACM Symp.

on Theory of Computing (STOC), pages 3–16, 2018.

[BCLL19] Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee. Metrical task

systems on trees via mirror descent and unfair gluing. In Proc. 30th ACM-SIAM

Symp. on Discrete Algorithms (SODA), pages 89–97, 2019.

[BE98] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.

Cambridge University Press, 1998.

[BEK17] Nikhil Bansal, Marek Eliás, and Grigorios Koumoutsos. Weighted k-server bounds

via combinatorial dichotomies. In Proc. 58th IEEE Symp. on Foundations of Computer

Science (FOCS), pages 493–504. IEEE Computer Society, 2017.

[BEKN18] Nikhil Bansal, Marek Eliás, Grigorios Koumoutsos, and Jesper Nederlof. Com-

petitive algorithms for generalized k-server in uniform metrics. In Proc. 29th

ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 992–1001, 2018.

BIBLIOGRAPHY 85

[BFR95] Yair Bartal, Amos Fiat, and Yuval Rabani. Competitive algorithms for distributed

data management. Journal of Computer and System Sciences, 51(3):341–358, 1995.

[BFS21] Marcin Bienkowski, Björn Feldkord, and Paweł Schmidt. A nearly optimal deter-

ministic online algorithm for non-metric facility location. In Proc. 38th Symp. on

Theoretical Aspects of Computer Science (STACS), 2021.

[BGRS10] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. An

improved lp-based approximation for steiner tree. In Proc. 42nd ACM Symp. on

Theory of Computing (STOC), pages 583–592, 2010.

[BH21] Nadia Burkart and Marco Huber. A survey on the explainability of supervised

machine learning. Journal of Artificial Intelligence Research, 70, 2021.

[BJS19] Marcin Bienkowski, Łukasz Jeż, and Paweł Schmidt. Slaying hydrae: Improved

bounds for generalized k-server in uniform metrics. In Proc. 30th Int. Symp. on

Algorithms and Computation (ISAAC), pages 14:1–14:14, 2019.

[BKLS18] Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Paweł Schmidt. A

primal-dual online deterministic algorithm for matching with delays. In Proc. 16th

Workshop on Approximation and Online Algorithms (WAOA), pages 51–68, 2018.

[BKS17a] Marcin Bienkowski, Artur Kraska, and Paweł Schmidt. A deterministic algo-

rithm for online steiner tree leasing. In Proc. 15th Algorithms and Data Structures

Symposium (WADS), pages 169–180, 2017.

[BKS17b] Marcin Bienkowski, Artur Kraska, and Paweł Schmidt. A match in time saves nine:

Deterministic online matching with delays. In Proc. 15th Workshop on Approximation

and Online Algorithms (WAOA), pages 132–146, 2017.

[BKS18] Marcin Bienkowski, Artur Kraska, and Paweł Schmidt. Online service with delay

on a line. In Proc. 25th Int. Colloq. on Structural Information and Communication

Complexity (SIROCCO), pages 237–248, 2018.

[BLMN03] Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric Ramsey-

type phenomena. In Proc. 35th ACM Symp. on Theory of Computing (STOC), pages

463–472, 2003.

[BLS92] Alan Borodin, Nati Linial, and Michael E. Saks. An optimal on-line algorithm for

metrical task system. Journal of the ACM, 39(4):745–763, 1992.

86 BIBLIOGRAPHY

[BN09] Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and

packing. Mathematics of Operations Research, 34(2):270–286, 2009.

[BP89] Marshall W. Bern and Paul E. Plassmann. The steiner problem with edge lengths

1 and 2. Information Processing Letters, 32(4):171–176, 1989.

[BS89] David L. Black and Daniel D. Sleator. Competitive algorithms for replication and

migration problems. Technical Report CMU-CS-89-201, Department of Computer

Science, Carnegie-Mellon University, 1989.

[CB10] N.M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network

virtualization. Computer Networks, 54(5):862–876, 2010.

[CFK20] Dimitris Christou, Dimitris Fotakis, and Grigorios Koumoutsos. Memoryless

algorithms for the generalized k-server problem on uniform metrics. CoRR,

abs/2007.08669, 2020.

[CG05] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility

location problems. SIAM Journal on Computing, 34(4):803–824, 2005.

[Chr03] Marek Chrobak. SIGACT news online algorithms column 1. SIGACT News,

34(4):68–77, 2003.

[CKPV91] Marek Chrobak, Howard J. Karloff, Thomas H. Payne, and Sundar Vishwanathan.

New results on server problems. SIAM Journal on Discrete Mathematics, 4(2):172–181,

1991.

[CL91] Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for

k-servers on trees. SIAM Journal on Computing, 20(1):144–148, 1991.

[CS03] Fabián A. Chudak and David B. Shmoys. Improved approximation algorithms for

the uncapacitated facility location problem. SIAM Journal on Computing, 33(1):1–25,

2003.

[CS04] Marek Chrobak and Jirí Sgall. The weighted 2-server problem. Theoretical Computer

Science, 324(2-3):289–312, 2004.

[CSEN17] Zhengxing Chen, Yizhou Sun, Magy Seif El-Nasr, and Truong-Huy D. Nguyen.

Player skill decomposition in multiplayer online battle arenas. 2017.

BIBLIOGRAPHY 87

[CV13] Ashish Chiplunkar and Sundar Vishwanathan. On randomized memoryless algo-

rithms for the weighted k-server problem. In Proc. 54th IEEE Symp. on Foundations

of Computer Science (FOCS), pages 11–19, 2013.

[DCT+
12] Olivier Delalleau, Emile Contal, Eric Thibodeau-Laufer, Raul Chandias Ferrari,

Yoshua Bengio, and Frank Zhang. Beyond skill rating: Advanced matchmaking in

Ghost Recon Online. IEEE Trans. Comput. Intellig. and AI in Games, 4(3):167–177,

2012.

[DGS01] Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. On-line analysis of the

TCP acknowledgment delay problem. Journal of the ACM, 48(2):243–273, 2001.

[EKW16] Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes

waste! In Proc. 48th ACM Symp. on Theory of Computing (STOC), pages 333–344,

2016.

[Elo78] Arpad E. Elo. The rating of chessplayers, past and present. Arco Publishing, 1978.

[ESW17] Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum cost perfect matching

with delays for two sources. In Proc. 10th Int. Conf. on Algorithms and Complexity

(CIAC), pages 209–221, 2017.

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM,

45(4):634–652, 1998.

[FGS04] Rudolf Fleischer, Włodzimierz Głazek, and Steve S. Seiden. New results for online

page replication. Theoretical Computer Science, 324(2–3):219–251, 2004.

[FHK05] Bernhard Fuchs, Winfried Hochstättler, and Walter Kern. Online matching on a

line. Theoretical Computer Science, 332(1–3):251–264, 2005.

[FKL+
91] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator,

and Neal E. Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685–

699, 1991.

[Fot07] Dimitris Fotakis. A primal-dual algorithm for online non-uniform facility location.

Journal of Discrete Algorithms, 5(1):141–148, 2007.

[Fot08] Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica,

50(1):1–57, 2008.

88 BIBLIOGRAPHY

[FR94] Amos Fiat and Moty Ricklin. Competitive algorithms for the weighted server

problem. Theoretical Computer Science, 130(1):85–99, 1994.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approxi-

mating arbitrary metrics by tree metrics. Journal of Computer and System Sciences,

69(3):485–497, 2004.

[GK98] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location

algorithms. In Proc. 9th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages

649–657, 1998.

[GK11] Anupam Gupta and Jochen Könemann. Approximation algorithms for network

design: A survey. Surveys in Operations Research and Management Science, 16(1):3–20,

2011.

[GL12] Anupam Gupta and Kevin Lewi. The online metric matching problem for doubling

metrics. In Proc. 39th Int. Colloq. on Automata, Languages and Programming (ICALP),

pages 424–435, 2012.

[HLP14] MohammadTaghi Hajiaghayi, Vahid Liaghat, and Debmalya Panigrahi. Near-

optimal online algorithms for prize-collecting steiner problems. In Proc. 41st Int.

Colloq. on Automata, Languages and Programming (ICALP), pages 576–587, 2014.

[HLP17] MohammadTaghi Hajiaghayi, Vahid Liaghat, and Debmalya Panigrahi. Online

node-weighted steiner forest and extensions via disk paintings. SIAM Journal on

Computing, 46(3):911–935, 2017.

[Hoc82] Dorit S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical

Programming, 22(1):148–162, 1982.

[IW91] Makoto Imase and Bernard M. Waxman. Dynamic Steiner tree problem. SIAM

Journal on Discrete Mathematics, 4(3):369–384, 1991.

[JMM+
03] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V.

Vazirani. Greedy facility location algorithms analyzed using dual fitting with

factor-revealing LP. Journal of the ACM, 50(6):795–824, 2003.

[JMS02] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for

facility location problems. In Proc. 34th ACM Symp. on Theory of Computing (STOC),

pages 731–740, 2002.

BIBLIOGRAPHY 89

[Juk11] Stasys Jukna. Extremal Combinatorics - With Applications in Computer Science.

Springer, 2011.

[KKR03] Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP acknowledge-

ment and other stories about e/(e - 1). Algorithmica, 36(3):209–224, 2003.

[KMMO94] Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan Owicki. Competi-

tive randomized algorithms for non-uniform problems. Algorithmica, 11(6):542–571,

1994.

[KMRS88] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Competi-

tive snoopy caching. Algorithmica, 3(1):77–119, 1988.

[KMV94] Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-line algorithms for

weighted bipartite matching and stable marriages. Theoretical Computer Science,

127(2):255–267, 1994.

[KN03] Elias Koutsoupias and Akash Nanavati. The online matching problem on a line. In

Proc. 1st Workshop on Approximation and Online Algorithms (WAOA), pages 179–191,

2003.

[KNR02] Sanjeev Khanna, Joseph Naor, and Danny Raz. Control message aggregation in

group communication protocols. In Proc. 29th Int. Colloq. on Automata, Languages

and Programming (ICALP), pages 135–146, 2002.

[Kor04] Simon Korman. On the use of randomization in the online set cover problem.

Master’s thesis, The Weizmann Institute of Science, 2004.

[Kou09] Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118,

2009.

[KP93] Bala Kalyanasundaram and Kirk Pruhs. Online weighted matching. Journal of

Algorithms, 14(3):478–488, 1993.

[KP95] Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture.

Journal of the ACM, 42(5):971–983, 1995.

[KPR00] Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis

of a local search heuristic for facility location problems. Journal of Algorithms,

37(1):146–188, 2000.

90 BIBLIOGRAPHY

[KT90] Antoon Kolen and Arie Tamir. Covering problems. In P.B. Mirchandani and R.L.

Francis, editors, Discrete Location Theory, Wiley Series in Discrete Mathematics and

Optimization. Wiley, 1990.

[KT04] Elias Koutsoupias and David Scot Taylor. The CNN problem and other k-server

variants. Theoretical Computer Science, 324(2-3):347–359, 2004.

[KVV90] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm

for on-line bipartite matching. In Proc. 22nd ACM Symp. on Theory of Computing

(STOC), pages 352–358, 1990.

[KZ97] Marek Karpinski and Alexander Zelikovsky. New approximation algorithms for

the steiner tree problems. Journal of Combinatorial Optimization, 1(1):47–65, 1997.

[Lee18] James R. Lee. Fusible HSTs and the randomized k-server conjecture. In Proc. 59th

IEEE Symp. on Foundations of Computer Science (FOCS), pages 438–449, 2018.

[Li13] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location

problem. In Proc. 38th Int. Colloq. on Automata, Languages and Programming (ICALP),

pages 77–88, 2013.

[LRWY99] Carsten Lund, Nick Reingold, Jeffery Westbrook, and Dicky C. K. Yan. Competitive

on-line algorithms for distributed data management. SIAM Journal on Computing,

28(3):1086–1111, 1999.

[Mat16] Akira Matsubayashi. Non-greedy online Steiner trees on outerplanar graphs. In

Proc. 14th Workshop on Approximation and Online Algorithms (WAOA), pages 129–141,

2016.

[Meh13] Aranyak Mehta. Online matching and ad allocation. Foundations and Trends in

Theoretical Computer Science, 8(4):265–368, 2013.

[Mey01] Adam Meyerson. Online facility location. In Proc. 42nd IEEE Symp. on Foundations

of Computer Science (FOCS), pages 426–431, 2001.

[Mey05] Adam Meyerson. The parking permit problem. In Proc. 46th IEEE Symp. on

Foundations of Computer Science (FOCS), pages 274–284, 2005.

[MMS90] Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive algorithms

for server problems. Journal of Algorithms, 11(2):208–230, 1990.

BIBLIOGRAPHY 91

[MNP06] Adam Meyerson, Akash Nanavati, and Laura J. Poplawski. Randomized online

algorithms for minimum metric bipartite matching. In Proc. 7th ACM-SIAM Symp.

on Discrete Algorithms (SODA), pages 954–959, 2006.

[MYZ06] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Approximation algorithms for

metric facility location problems. SIAM Journal on Computing, 36(2):411–432, 2006.

[NPS11] Joseph Naor, Debmalya Panigrahi, and Mohit Singh. Online node-weighted steiner

tree and related problems. In Proc. 52nd IEEE Symp. on Foundations of Computer

Science (FOCS), pages 210–219, 2011.

[NW13] Chandrashekhar Nagarajan and David P. Williamson. Offline and online facility

leasing. Discrete Optimization, 10(4):361–370, 2013.

[PS00] Hans Jürgen Prömel and Angelika Steger. A new approximation algorithm for the

steiner tree problem with performance ratio 5/3. Journal of Algorithms, 36(1):89–101,

2000.

[PSW10] Yvonne Anne Pignolet, Stefan Schmid, and Roger Wattenhofer. Tight bounds for

delay-sensitive aggregation. Discrete Mathematics & Theoretical Computer Science,

12(1):39–58, 2010.

[Rag88] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Ap-

proximating packing integer programs. Journal of Computer and System Sciences,

37(2):130–143, 1988.

[RT81] Edward M. Reingold and Robert Endre Tarjan. On a greedy heuristic for complete

matching. SIAM Journal on Computing, 10(4):676–681, 1981.

[RWS94] Nick Reingold, Jeffery Westbrook, and Daniel Dominic Sleator. Randomized

competitive algorithms for the list update problem. Algorithmica, 11(1):15–32, 1994.

[RZ05] Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph steiner tree

approximation. SIAM Journal on Discrete Mathematics, 19(1):122–134, 2005.

[Sch03] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algo-

rithms and combinatorics. Springer, 2003.

[Shm00] David B. Shmoys. Approximation algorithms for facility location problems. In

Klaus Jansen and Samir Khuller, editors, Proc. 3rd Approximation, Randomization,

92 BIBLIOGRAPHY

and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM),

pages 27–33. Springer, 2000.

[Sit14] René Sitters. The generalized work function algorithm is competitive for the

generalized 2-server problem. SIAM Journal on Computing, 43(1):96–125, 2014.

[SS06] René A. Sitters and Leen Stougie. The generalized two-server problem. Journal of

the ACM, 53(3):437–458, 2006.

[ST85] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and

paging rules. Communications of the ACM, 28(2):202–208, 1985.

[STA97] David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for

facility location problems (extended abstract). In Proc. 29th ACM Symp. on Theory

of Computing (STOC), pages 265–274, 1997.

[Umb15] Seeun Umboh. Online network design algorithms via hierarchical decompositions.

In Proc. 26th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1373–1387,

2015.

[Wes94] Jeffery Westbrook. Randomized algorithms for the multiprocessor page migration.

SIAM Journal on Computing, 23:951–965, 1994.

[WH16] Weili Wu and Yaochun Huang. Steiner trees. In Encyclopedia of Algorithms, pages

2102–2107. 2016.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.

Cambridge University Press, 2011.

[WY95] Jeffery Westbrook and Dicky C. K. Yan. The performance of greedy algorithms

for the on-line Steiner tree and related problems. Mathematical Systems Theory,

28(5):451–468, 1995.

[You95] Neal E. Young. Randomized rounding without solving the linear program. In

Proc. 6th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 170–178, 1995.

[You02] Neal E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002.

[Zel93] Alexander Zelikovsky. An 11/6-approximation algorithm for the network steiner

problem. Algorithmica, 9(5):463–470, 1993.

	Introduction
	Deterministic vs. randomized algorithms
	Why deterministic algorithms are important
	Known determinization techniques
	Overview of results and thesis outline
	Related offline algorithms
	Bibliographical notes

	Non-metric facility location
	Introduction
	Fractional solution
	Deterministic rounding
	Handling large aspect ratios
	Remarks and applications

	Matching with delays
	Introduction
	Algorithm
	Analysis
	Lower bounds and tightness

	Steiner tree leasing
	Introduction
	HST embeddings
	Interval model
	Algorithm construction
	Analysis

	Generalized k-server problem in uniform metrics
	Introduction
	Hydra game
	Improved algorithm for generalized k-server problem
	Lower bound
	Final remarks

	Afterword

